期刊文献+

基于锂离子电池热特性的SOH在线诊断模型研究 被引量:10

On-line diagnosis model of SOH based on thermal characteristics of lithium-ion battery
原文传递
导出
摘要 电池健康状态(SOH)评估是电池管理系统(BMS)中的关键一环,传统的SOH估计方法通常是基于锂离子电池的开路电压、容量或内阻等静态测量参数,然而由于测试过程耗时长、测试环境特殊,在线容量或电阻测量在BMS中很少能实现。从CC放电模式下100%~60%SOC区间内的温度变化速率曲线中提取出一种新的SOH在线评估健康因子(dT/dt)mean。为验证健康因子的合理性,基于集总电池模型,研究电池的生热率发现(dT/dt)mean反应了电池正极熵变特性,以此建立了(dT/dt)mean、可逆反应热与SOH关系的健康寿命预测模型。并基于6组18650 LCO锂离子电池共计706组容量衰退循环数据给出了Pearson相关系数法以及神经网络下的多数据融合法有效性验证,验证结果表明(dT/dt)mean作为SOH在线评估健康因子可以有效提升模型系统预测精度。 State of health(SOH) assessment is a key part of the battery management system(BMS). Traditional SOH estimation methods usually utilize static measurement parameters such as the open circuit voltage, capacity or internal resistance of lithium-ion batteries. However, due to the time-consuming test process and the special test environment, online capacity or resistance measurement is rarely achieved in BMS. In this article, a new SOH online assessment health indicator(dT/dt)mean is extracted from the temperature change rate curve in the 100%~60% SOC interval under CC discharge mode. To verify its reasonability, based on the lumped battery model, the heat generation rate of the battery is studied. Results show that(dT/dt)mean reflects the positive entropy change characteristic of the battery. In this way, a health span prediction model of SOH related to(dT/dt)mean and reversible reaction heat can be formulated. Based on a total of 706 sets of six 18650 LCO lithium-ion battery capacity decline cycle data, this article verifies the effectiveness of Pearson correlation coefficient method and the multi-data fusion method under neural network. Experimental results show that(dT/dt)mean as an online diagnosis health indicator of SOH can effectively improve the prediction accuracy.
作者 石伟杰 王海民 Shi Weijie;Wang Haimin(School of Energy and Power Engineering,University of Shanghai for Science and Technology,Shanghai 200093,China;Shanghai Key Laboratory of Multiphase Flow and Heat Transfer in Power Engineering,Shanghai 200093,China)
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2020年第8期206-216,共11页 Chinese Journal of Scientific Instrument
基金 国家重点研发计划(2018YFB0104400)项目资助
关键词 锂离子电池 健康状态 温度变化速率 可逆反应的熵变 在线诊断 神经网络 lithium-ion batteries state of health temperature variation rate entropy change of reversible reaction on-line diagnosis neural network
  • 相关文献

参考文献2

二级参考文献118

  • 1安晓雨,谭玲生.空间飞行器用锂离子蓄电池储能电源的研究进展[J].电源技术,2006,30(1):70-73. 被引量:19
  • 2戴海峰,魏学哲,孙泽昌.基于扩展卡尔曼滤波算法的燃料电池车用锂离子动力电池荷电状态估计[J].机械工程学报,2007,43(2):92-95. 被引量:44
  • 3谭维炽,胡金刚.航天器系统工程[M].北京:科学技术出版社,2009.
  • 4LU L, HAN X, LI J, et al. A review on the key issues for lithium-ion battery management in electric vehicles [ J ]. Journal of Power Sources, 2013, 226: 272-288.
  • 5STUART T, FANG F, WANG X, et al. A modular bat- tery management system for HEVs [ C~. In Proceedings of the SAE Future Car Congress, Arlington, VA, USA, 2002 : 1-9.
  • 6GOEBEL K, SAHA B, SAXENA A, et al. Christophers- en prognostics in battery health management [ J ]. IEEE Instrumentation and Measurement Magazine, 2008, 11 (4) : 33-40.
  • 7WILLIARD N, HE W, HENDRICKS C, et al. Lessons learned from the 787 dreamliner issue on lithium-ion bat- tery reliability[ J]. Energies, 2013, 6 (9) : 4682-4695.
  • 8JOHNSON S B, GORMLEY T J, KESSLER S S, et al. sys- tem health management with aerospaoce applications [ M ]. United Kingdom: John Wiley & Sons, Ltd, West Sussex, 2011.
  • 9ZHANG J, LEE J. A review on prognostics and health monitoring of Li-ion battery [ J ]. Journal of Power Sources, 2011, 196 (15) : 6007-6014.
  • 10BARRe A, DEGUILHEM B, GROLLEAU S, et al. A review on lithium-ion battery ageing mechanisms and es- timations for automotive applications[J]. Journal of Pow- er Sources, 2013, 241: 680-689.

共引文献183

同被引文献103

引证文献10

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部