期刊文献+

一种快速的数学形态学滤波方法及其在脉搏信号处理中的应用 被引量:7

Fast mathematical morphological filtering method and its application on pulse signal processing
原文传递
导出
摘要 针对数学形态学滤波法处理一维信号运算量大的问题,提出一种快速的数学形态学滤波方法。首先,对腐蚀操作进行改进,使其能够用于信号实时处理;然后,将微处理器系统缓存区的数据更新过程与形态学滤波原理相结合,采用滑窗迭代的方式进行运算,减少运算量;进一步,改进平滑滤波,提高滤波结果优化速度。采用实测脉搏信号作为实验数据,结果表明,相比于现有方法,改进后方法保持精度不变,并有效地降低了运算时间(提速70倍以上),基于扁平型和线型结构元素的形态学滤波法具有更快的滤波速度(提速110倍以上),随着结构元素和缓存区长度的增加,所提出方法仍能快速地进行信号处理(对于240 s的数据,耗时小于4.5 s),并能用于脉搏信号实时滤波、分割和特征提取(耗时小于45 s)。因此,所提出方法有望用于手环、手表等实时性要求较高的智能可穿戴设备。 In the actual one-dimensional signal processing, the mathematical morphological filtering method(MMFM) has a large amount of operation. To address this issue, a fast mathematical morphological filtering method(FMMFM) is proposed in this study. First, the erosion operation is modified to realize the real-time signal processing. Then, the data updating process of buffer in the microprocessor system is combined with the theory of MMFM. The iteration of sliding window is used to improve the time consumption of MMFM. In further, the smooth filtering method is also improved to speed up the optimization of the FMMFAM results. The measured pulse signals are used as experimental data. Compared with the MMFM, results show that the FMMFM can effectively reduce the calculation time(speed up over 70 times) and keep the filtering accuracy unchanged. The FMMFM with flat and linear structuring elements have faster filtering speed than those of other elements(speed up over 110 times). The proposed method can still process the signal in real-time(less than 4.5 s for the signals of 240 s) as the increase of the lengths of structuring element and buffer. It can be employed in pulse signal filtering, segmenting and feature extracting in real-time(less than 45 s). Therefore, the proposed method may be applied in some smart wearable devices with high real-time requirements, such as wristbands and watches.
作者 丑永新 张爱华 顾亚 刘继承 冯玉峰 Chou Yongxin;Zhang Aihua;Gu Ya;Liu Jicheng;Feng Yufeng(School of Electrical and Automatic Engineering,Changshu Institute of Technology,Suzhou 215500,China;College of Electrical and Information Engineering,Lanzhou University of Technology,Lanzhou 730050,China;Changshu No.1 People's Hospital,Suzhou 215500,China)
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2020年第2期253-262,共10页 Chinese Journal of Scientific Instrument
基金 国家自然科学基金(61901062,81360229) 江苏省自然科学基金(BK20170436,BK20181033)项目资助.
关键词 快速的形态学滤波 滑窗迭代 改进平滑滤波 脉搏信号实时处理 fast mathematical morphology filtering method sliding window the improved smooth filtering method PPG signal processing in real-time
  • 相关文献

参考文献9

二级参考文献105

  • 1王少萍,苑中魁,杨光琴.基于小波消噪的液压泵故障诊断[J].中国机械工程,2004,15(13):1160-1163. 被引量:23
  • 2陈平,李庆民.基于数学形态学的数字滤波器设计与分析[J].中国电机工程学报,2005,25(11):60-65. 被引量:111
  • 3章立军,杨德斌,徐金梧,陈志新.基于数学形态滤波的齿轮故障特征提取方法[J].机械工程学报,2007,43(2):71-75. 被引量:75
  • 4胡广书.数字信号处理-理论、算法与实现[M].清华大学出版社,2002..
  • 5Hamid M S, Harvey N R, Marshall S. Corrections to Genetic algorithm optimization of multidimensional grayscale soft morphological filters with applications in film archive restoration. IEEE Trans. On Circuits and Systems for Video Technology, 2003, 13(7): 726-726.
  • 6Soille P, Pesaresi M. Advances in mathematical morphology applied to geoscience and remotesensing[J].IEEE Trans. On Geoscience and Remote Sensing, 2002, 40(9): 2042-2055.
  • 7Zhang Keqi, Chen Shu-Ching, Whitman D et al. A progressive morphological filter for removing nonground measurements from airborne LIDAR data[J]. IEEE Tran. On Geoscience and Remote Sensing, 2003, 41(4): 872-882.
  • 8Serra J. Morphological filter: an overview [ J ]. Signal Process, 1994, 38(4): 3-11.
  • 9Dong Ya-bin, Liao Ming-fu. Fault diagnosis of rolling element bearing based on modified morphological method [ J ]. Mechanical Systems and Signal Processing, 2011, 25 (4) : 1276 - 1286.
  • 10Nikolaou N G, Antoniadis A. Application of morphological operators and envelope extractions for impulsive-type periodic signals [ J ]. Mechanical Systems and Signals Processing, 2003, 17(6) : 1147 -1162.

共引文献180

同被引文献69

引证文献7

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部