期刊文献+

加权聚合深度卷积特征的图像检索方法 被引量:1

An Image Retrieval Method Based on Weighting Aggregation of Deep Convolutional Features
原文传递
导出
摘要 针对目前基于深度卷积特征的图像检索方法无法充分突出图像显著性区域特征和不能有效抑制背景噪声等问题,提出了一种加权聚合深度卷积特征的图像检索方法.根据逆文档频率,该方法对拥有较少特征和紧密特征的特征图赋予较大权重,生成差异性加权向量.由于不同图像表现的特征不同,该方法选择最能真实反映图像特征的一组特征图,计算出权重矩阵并对其进行滤波处理,最终生成选择滤波加权矩阵.公开数据集上的实验结果表明,本文提出的方法能够有效地增强图像特征的辨别能力,在图像检索精度上优于其它同类方法. As the current image retrieval methods based on deep convolutional features cannot fully highlight salient regional features of images and cannot effectively suppress background noises,an efficient unsupervised image retrieval method based on the weighting aggregation of deep convolutional features is proposed.According to the inverse document frequency,this method assigns a larger channel weighting to the feature map with fewer features and compact features and then generates a differentiated weighting vector.As different images have different features,this method selects a set of feature maps that can most truly indicate image features,calculates the weighting matrix,and performs a filtering process to generate a selected filter weighting matrix.Experimental results on different public datasets show that the proposed method can effectively improve the discrimination power of image features.Furthermore,under the same experimental setting,the proposed method is superior to other similar aggregation approaches on image retrieval accuracy.
作者 李恒 赵广社 王鼎衡 刘美兰 马凡波 LI Heng;ZHAO Guangshe;WANG Dingheng;LIU Meilan;MA Fanbo(School of Software Engineering,Xi'an Jiaotong University,Xi'an 710049,China;School of Automation Science,Xi'an Jiaotong University,Xi'an 710049,China;Qingdao Xingyue Iron Tower and Engineering Co.,Ltd,Qingdao 266300,China)
出处 《信息与控制》 CSCD 北大核心 2020年第1期55-61,共7页 Information and Control
基金 国家重点基础研究发展计划资助项目(2015CB057409).
关键词 图像检索 深度卷积特征 聚合 差异性加权向量 选择滤波加权矩阵 image retrieval deep convolutional features aggregation differentiated weighting vector selected filter weighting matrix
  • 相关文献

参考文献2

二级参考文献21

共引文献15

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部