摘要
The design and manufacture of anti-scaling surface is a prospective way to prevent scaling in oil field.In this work,a novel superhydrophobic Cu^(2+)-loaded and DTPMPA-modified anodized copper oxide(S-Cu^(2+)/D-ACO)coating was fabricated by modification of 1H,1H,2H,2H-perfluorodecyltriethoxysilane.The valid storing of scale inhibitors at the coating surface and the interfacial release of Cu^(2+)ions contribute to enhancing the anti-scaling of the S-Cu^(2+)/D-ACO coating.The water contact angle of the S-Cu^(2+)/D-ACO coating is 163.03°and exhibits superhydrophobicity,which makes it difficult for CaCO_(3)to deposit at the surface of the coating.DTPMPA will steadily lurk into the inner space,and Cu^(2+)will be loaded at the interface in the form of the DTPMPA:Cu^(2+)chelate.During the deposition of CaCO_(3),the dynamic release of DTPMPA can be realized by transferring DTPMPA:Cu^(2+)to DTPMPA:Ca^(2+).Interestingly,the released Cu^(2+)hinders the active growth of CaCO_(3).After 48 h of scaling,the mass of CaCO_(3)scale at the S-Cu^(2+)/D-ACO coating surface is only 44.1%that of the anodized copper oxide coating.The excellent anti-scaling performance of the S-Cu^(2+)/D-ACO coating is determined by the synergistic effect of the DTPMPA lurking and dynamic release,as well as the Cu^(2+)inhibition at the interface of superhydrophobic coating and against CaCO_(3)deposition.This research provides a new exploration for designing and fabricating anti-scaling superhydrophobic surface for oil field development.
基金
financially supported by the National Science Foundation for Distinguished Young Scholars of China(Grant No.51925403)
the Major Research Plan of National Natural Science Foundation of China(Grant No.91934302)
the National Science Foundation of China(21676052,21606042)