期刊文献+

3-莱布尼茨代数的非交换扩张

On Non-abelian Extensions of 3-Leibniz Algebras
原文传递
导出
摘要 本文主要利用Maurer-Cartan元研究3-莱布尼茨代数的非交换扩张.我们构造了一个微分分次李代数,并且证明了这个微分分次李代数上的Maurer-Cartan元等价类与3-莱布尼茨代数的非交换扩张同构类是一一对应的.同时分析了由3-莱布尼茨代数基本元所构成空间上的莱布尼茨代数结构,证明了一个3-莱布尼茨代数的非交换扩张诱导了一个莱布尼茨代数的非交换扩张. In this paper,we study non-abelian extensions of 3-Leibniz algebras through Maurer-Cartan elements.We construct a differential graded Lie algebra and prove that there is a one-to-one correspondence between isomorphism classes of non-abelian extensions of 3-Leibniz algebras and equivalence classes of Maurer-Cartan elements in this differential graded Lie algebra.We also analyze the Leibniz algebra structure on the space of fundamental objects of 3-Leibniz algebras,and show that a non-abelian extension of 3-Leibniz algebras naturally induces a nonabelian extension of Leibniz algebras.
作者 徐楠燕 生云鹤 XU Nanyan;SHENG Yunhe(School of Mathematics,Jilin University,Changchun,Jilin,130012,P.R.China)
出处 《数学进展》 CSCD 北大核心 2023年第6期1048-1062,共15页 Advances in Mathematics(China)
基金 国家自然科学基金(No.11922110)
关键词 3-莱布尼茨代数 莱布尼茨代数 非交换扩张 Maurer-Cartan元 3-Leibniz algebra Leibniz algebra non-abelian extension Maurer-Cartan element
  • 相关文献

参考文献4

二级参考文献19

  • 1Loday J L. Une version non commutative des algebres de Lie: Les algebres de Leibniz. Enseign Math, 1993, 3:269-293.
  • 2Ibanez R, Leon M, Marrero J, et al. Leibniz algebroid associated with a Nambu-Poisson structure. J Phys A, 1999, 32:8129-8144.
  • 3Kinyon M K, Weinstein A. Leibniz algebras, Courant algebroids, and multiplications on reductive homo- geneous spaces. Amer J Math, 2001, 123:525-550.
  • 4Bagger J, Lambert N. Modeling multiple M2's. Phys Rev D, 2007, 75:045020.
  • 5Casas, J M, Loday J L, Pirashvili T. Leibniz n-algebras. Forum Math, 2002, 14:189-207.
  • 6Gustavsson A. Algebraic structures on parallel M2-branes. Nucl Phys B, 2009, 811:66-76.
  • 7Bagger J, Lambert N. Gauge symmetry and supersymmetry of multiple M2-branes. Phys Rev D, 2008, 77:065008.
  • 8Hagiwaxa Y, Mizutani T. Leibniz algebras associated with foliations. Kodai Math J, 2002, 25:151-165.
  • 9Casas J, Insua M, Ladra M. Poincare-Birkhoff-Witt theorem for Leibniz n-algebras. J Symbolic Comput, 2007, 42:1052-1065.
  • 10Albeverio S, Ayupov S, Omirov B, et al. Cartan Subalgebras of Leibniz n-Algebras. Comm Alg, 2009, 37(6): 2080-2096.

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部