期刊文献+

基于同态密码技术保护的油气储量计算研究 被引量:1

Research of oil and gas reserve calculation based on homomorphic cryptographic technology
下载PDF
导出
摘要 近年来,随着油气行业采集数据量的增加,数据安全越来越受到重视。为解决常规信息安全技术仅能对数据进行加密保护,而密文不能用于计算的弊端,将目前能有效满足数据加密保护和计算需求的同态密码技术引入油气储量计算。通过建立基于RSA的同态密码系统,分别计算油藏和气藏储量,结果显示:采用同态密码加密得到的密文计算的储量与明文数据计算结果一致,计算精度达到需求;建立的密码系统安全性与国际通用密码系统相当,能实现对储量数据的安全保护;同态密码技术可分别对不同接收者输出密文,能实现数据溯源,便于查找数据泄露方。 In recent years,the amount of oil and gas industry collected data is becoming larger and larger,and data security has received increasing attention.In order to solve the shortcomings of conventional information security technology that only encrypts data,but the ciphertext cannot be used for calculation,the homomorphic cryptography technology that can meet the needs of data encryption protection and calculation currently is introduced into the calculation of oil and gas reserves.By establishing RSA-based homomorphic cipher system,the reserves of oil and gas reservoirs are calculated separately.The results show that the calculated ciphertext reserves obtained by homomorphic cipher encryption are consistent with the plaintext data calculation results,and the calculation accuracy fully meets the demand.The established cryptosystem is equivalent to that of the international general cryptosystem,which can realize the security protection of the reserve data.Homomorphic cryptographic technology can output ciphertext to different receiver separately,which gives traceability,and help to find the data leaking party.
作者 陈万钢 宋荣彩 王恺 CHEN Wangang;SONG Rongcai;WANG Kai(Hao Fu Cryptography Testing Co.Ltd.,Chengdu,Sichuan 610000,China;Chengdu University of Technology State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation,Chengdu,Sichuan 610059,China)
出处 《世界石油工业》 2020年第4期57-63,共7页 World Petroleum Industry
关键词 油气储量 同态密码 密码 安全 oil and gas reserve homomorphic cryptography cryptography information security
  • 相关文献

参考文献1

二级参考文献19

  • 1RIVEST R L,ADLEMAN L,DERTOUZOS M L. On data banks and privacy homomorphisms[A].1978.169-180.
  • 2PAILLIER P. Public-key cryptosystems based on composite degree residuosity classes[A].{H}Springer,1999.223-238.
  • 3RIVEST R L,SHAMIR A,ADLEMAN L. A method for obtaining digital signatures public key cryptosystem[J].{H}Communications of the ACM,1978,(01):120-126.
  • 4BONEH D,GOH E J,NISSIM K. Evaluating 2-DNF formulas on ciphertexts[A].2005.325-342.
  • 5GENTRY C. Fully homomorphic encryption using ideal lattices[A].2009.169-178.
  • 6GENTRY C. A Fully Homomorphic Encryption Scheme[D].Stand-ford:Stanford University,2009.
  • 7DIJK M,GENTRY C,HALEVI S. Fully homomorphic encryp-tionover the integers[A].2010.24-43.
  • 8SMART N,VERCAUTEREN F. Ful y homomorphic encryption with relatively smal key and ciphertext sizes[A].2010.420-443.
  • 9GENTRY C,HALEVI S. Implementing gentry’s fully-homomorphic encryption scheme[A].2011.129-148.
  • 10GENTRY C,HALEVI S. Fully homomorphic encryption without squashing using depth-3 arithmetic circuits[EB/OL].http:/eprint.iacr.org/2011/279,2011.

共引文献15

同被引文献5

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部