期刊文献+

送粉法激光熔覆工艺对不锈钢熔覆层微观组织结构与性能的影响

The Influence of Powder Feeding Laser Cladding Process on the Microstructure and Properties of Stainless-Steel Cladding Layer
下载PDF
导出
摘要 本文研究了送粉法激光熔覆条件下,最优化的激光熔覆工艺窗口及其对熔覆层性能的影响。结果表明,对于粒度范围为53~150μm的球形不锈钢粉,送粉法激光熔覆的最优化的工艺窗口为:功率2600 W、扫描速度8 mm/s、熔覆层厚度2.0 mm、搭接率50%。在此条件下熔覆层显微硬度最高可达721.68 HV0.2,为基体硬度的3.7倍。熔覆层组织由平面晶、胞状枝晶及胞晶组成,晶粒大小随激光能量密度而变化,粉末由α-Fe、γ-Fe、M23(B,C)6相组成,而熔覆层中γ-Fe相几乎消失并转变为马氏体相。摩擦磨损试验表明,熔覆层的摩擦系数均低于基体,说明耐磨性提高。 In this study,the optimal process and its effect on the properties of laser cladding layer with powder feeding methods were investigated.For spherical stainless-steel powder with particle size range of 53~150μm,the optimized process parameters is that the power of 2600 W,the scanning speed of 8 mm/s,the thickness of 2.0 mm and the lap rate of 50%.Under the optimized process parameters,the microhardness of the cladding layer can reach up to 721.68 HV0.2,which was 3.7 times as the substrate.The microstructure of the cladding layer was composed of planar crystal,cellular dendrite and cellular crystal.The grain size varied with the laser energy density.The phases of powder wereα-Fe,γ-Fe and M23(B,C)6.The phase ofγ-Fe almost disappeared and turned to the Martensite in the cladding layer.Friction and wear-test showed that the friction coefficient of the cladding layer was lower than that of the substrate,which indicates the improvement of wear resistance.
作者 王旭 邓霞 夏春阳 杜开平 于月光 Wang Xu;Deng Xia;Xia Chunyang;Du Kaiping;Yu Yueguang(BGRIMM Technology Group,Beijing 100160;Beijing Key Laboratory of Special Coating Materials and Technology,Beijing 102206;China Iron&Steel Research Institute Group,Beijing 100081)
出处 《热喷涂技术》 2021年第2期17-27,共11页 Thermal Spray Technology
基金 国家重点研发计划(2018YFB2002000)
关键词 送粉法激光熔覆 工艺参数 熔覆层性能 微观组织结构 Powder feeding method laser cladding Process parameters Cladding layer performance Microstructure
  • 相关文献

参考文献2

二级参考文献20

  • 1刘硕,张维平.激光熔覆制备颗粒增强Ni基复合涂层的组织结构[J].焊接学报,2005,26(2):13-16. 被引量:17
  • 2LALLA N P, SRIVASTAVA O N. Surface dispersion hardening Cu matrix alloy [J]. Mater Sci Eng A, 2001, 304-306: 879-883.
  • 3LIU S, ZHANG W P. Research on microstructure of in-situ synthesized TiB2/Ni metal-ceramics composite coating [J]. J Alloys and Compounds, 2005,391: 146-150.
  • 4WEHNER A, JELIAZOVA Y, FRANCHY R. Growth and oxidation of a Ni3Al alloy on Ni (100) [J]. Surf Sci, 2003, 531: 287-294.
  • 5AYMARD L, DOMOUT B, VIAU G. Production of Co-Ni alloys by mechanical-alloying [J]. J Alloys and Compounds, 1996, 242:108-113.
  • 6GORSSE S, MIRACLE D B. Mechanical properties of Ti-6Al-4V/TiB composites with randomly oriented and aligned TiB reinforcements [J]. Acta Mater, 2003, 51(9): 2427-2442.
  • 7CONDE A, ZUBIRI F, DE DAMBORENEA J. Cladding of Ni-Cr-B-Si coatings with a high power diode laser [J]. Mater Sci Technol, 2002,34(1-2): 233-238.
  • 8KOOI B J, PEI Y T, DE HOSSON J Th M. The evolution of microstructure in a laser clad TiB-Ti composite coating [J]. Acta Mater, 2003, 51(3): 831-845.
  • 9CHEN Y, WANG H M. Growth morphology and mechanism of primary TiC carbide in laser cladding TiC/FeAl composite coating [J]. Mater Lett, 2003, 57: 1233-1238.
  • 10CONDE A, ZUBIRI F, DE DAMBORENEA J. Cladding of Ni-Cr-B-Si coatings with a high power diode laser [J]. Mater Sci Technol, 2002,34(1-2): 233-238.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部