期刊文献+

智能仓储货位规划与AGV路径规划协同优化算法 被引量:27

Shelf and AGV Path Cooperative Optimization Algorithm Used in Intelligent Warehousing
下载PDF
导出
摘要 智能仓储的优化一般分为货架优化和路径优化两部分:货架优化针对货物与货架两者的关系,对货物摆放位置进行优化;而路径优化主要寻找自动引导小车(automated guided vehicle,简称AGV)的最优路径.目前,大多的智能仓储优化仅对这两部分进行独立研究.在实际仓储应用中,只能以线性叠加的方式解决问题,导致问题的求解易陷入局部最优中.通过对智能仓储环节中各部分的关系进行耦合分析,提出了货位和AGV路径协同优化数学模型,将货架优化和路径规划归为一个整体;此外,提出了智能仓储协同优化框架的求解算法,包括货品相似度求解算法和改进的路径规划算法;并在以上两种算法的基础上,使用改进的遗传算法实现了货位路径协同优化.实验结果验证了所提出的智能仓储协同优化算法的有效性和稳定性.通过使用该算法,可有效提高仓储的出货效率,降低运输成本. The optimization of intelligent warehousing is generally divided into shelf optimization and path optimization.Shelf optimization considers the position of goods and shelves,and optimizes the placement of goods.Path optimization mainly seeks the optimal path planning for automatic guided vehicles.At present,most of the studies focus on these two scenarios independently.In the actual warehousing application,the problem can only be solved by linear superposition,which makes the solution easy to fall into the local optimum.Based on the coupling analysis of the relationship between various sections in the intelligent warehousing process,this study proposes a mathematical model of cooperative optimization of shelf and position,which combines shelf optimization and path planning as a whole.In addition,a cooperative optimization framework,including a product similarity solving algorithm and an improved path planning algorithm,is proposed.Based on the above two algorithms,an improved genetic algorithm is proposed for the cooperative optimization of shelf and path.The experimental results verify the effectiveness and stability of the intelligent warehousing cooperative optimization algorithm proposed in this study.By using this algorithm,it can improve the shipping efficiency of storage and reduce transportation costs..
作者 蔺一帅 李青山 陆鹏浩 孙雨楠 王亮 王颖芝 LIN Yi-Shuai;LI Qing-Shan;LU Peng-Hao;SUN Yu-Nan;WANG Liang;WANG Ying-Zhi(School of Computer Science and Technology,Xidian University,Xi’an 710071,China;Suzhou Mingyi Intelligent Storage Information Company,Kunshan 215300,China)
出处 《软件学报》 EI CSCD 北大核心 2020年第9期2770-2784,共15页 Journal of Software
基金 国家自然科学基金(61672401,61902039,61902288) 西安市科技计划(2017073CG/RC036(XDKD004))
关键词 智能仓储 货位规划 AGV路径规划 协同优化 遗传算法 intelligent warehousing shelf optimization AGV path optimization cooperative optimization genetic algorithm
  • 相关文献

参考文献12

二级参考文献53

  • 1魏英姿,赵明扬,黄雪梅,胡玉兰.求解TSP问题的贪心遗传算法[J].计算机工程,2004,30(19):19-20. 被引量:16
  • 2徐香玲,傅卫平,李德信,谢敬,刘韬.基于专家系统的自动化立体仓库出入库调度研究[J].物流技术,2005,24(2):38-40. 被引量:25
  • 3柳赛男,柯映林,李江雄,吕震.基于调度策略的自动化仓库系统优化问题研究[J].计算机集成制造系统,2006,12(9):1438-1443. 被引量:61
  • 4王转,贺文文.基于订单资料分析的配送中心规划及应用[J].机械工程学报,2007,43(4):173-177. 被引量:10
  • 5中华人民共和国商务部流通业发展司.商务部关于仓储业转型升级的指导意见[EB/OL].(2012-12-18)[2013-07-06].http:HWWW.mofcom.gov.cn/article/b/g/201304/20130400075343.shtml.
  • 6John J. Coyle, Edward J. Bardi, C. John Langley. The management of business logistics[M]. St. Paul, MN: West Pub., 1996.
  • 7田源,张文杰.仓储规划与管理[M].北京:清华大学出版社,2009:134-135.
  • 8S. A. Curtis. The classification of greedy algorithms[J]. Science of Computer Programming, 2003,49:125-157.
  • 9Seungmo Kang, Yanfeng Ouyang. The traveling purchaser problem with stochastic prices: Exact and approximate algorithms [J]. European Journal of Operational Research, 2011,209:265-272.
  • 10Hsieh S, Tsai K C. A BOM oriented class-based storage as- signment in an automated storage/retrieval systems [ J ]. In- ternational Journal of Advanced Manufacturing Technology, Springer, 2001,17 ( 9 ) :683 - 691.

共引文献124

同被引文献348

引证文献27

二级引证文献107

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部