摘要
对偶在优化理论中占有重要地位.本文介绍了一种定义对偶线性规划的新方法,这种方法求对偶时不需要把一般形式的线性规划转化为对称形式,不需要繁琐的推导就能直接得到原问题的对偶.通过这个方法并结合对偶理论,学生能更加容易地理解对偶的本质.
The duality theory plays an important role in optimization theory.In this paper,a new method is proposed to define the dual linear programming.Using this method,we do not need to convert the linear programming to symmetric form,it follows that the method can avoid tedious derivation.Combining this method with the duality theory,the students can more easily understand the essence of duality.
作者
涂建华
火博丰
TU Jian-hua;HUO Bo-feng(School of Mathematics and Statistics,Beijing Technology and Business University,Beijing 100048,China;School of Mathematics and Statistics,Qinghai Nomal University,Xining 810016,China;State Key Laboratory of intelligent information processing and application of Tibetan language,Qinghai Normal University,Xining 810016,China)
出处
《青海师范大学学报(自然科学版)》
2022年第3期54-58,共5页
Journal of Qinghai Normal University(Natural Science Edition)
基金
北京工商大学教育教学改革项目(jg2152031)
关键词
线性规划
对偶线性规划
对偶理论
数学教育
linear programming
dual linear programming
duality theory
mathematics education