摘要
Rice husk ash/natural rubber composites were fabricated by modifying rice husk ash with the rare earth coupling agent DN-8102. The structure of the rice husk ash and the morphological dispersion of the rice husk ash in a rubber matrix were charactered by scanning and transmission electron microscopy, respectively.The mechanical properties of the composites were experimentally studied. The surface energy and the interaction between rice husk ash particles can be reduced by surface modification of rice husk ash with a rare earth coupling agent, which reduces the agglomeration of rice husk ash in both liquid and rubber matrices and enhances the interactions between rice husk ash and the rubber phase, and thus results in improved mechanical properties for the resulting rice husk ash/natural rubber composite. The modulus of the composites will increase as the loading level of modified rice husk ash increases. A maximum tensile strength of 25.96 MPa for the composites can be obtained when the modified rice husk ash loading level is 4%.
Rice husk ash/natural rubber composites were fabricated by modifying rice husk ash with the rare earth coupling agent DN-8102. The structure of the rice husk ash and the morphological dispersion of the rice husk ash in a rubber matrix were charactered by scanning and transmission electron microscopy, respectively.The mechanical properties of the composites were experimentally studied. The surface energy and the interaction between rice husk ash particles can be reduced by surface modification of rice husk ash with a rare earth coupling agent, which reduces the agglomeration of rice husk ash in both liquid and rubber matrices and enhances the interactions between rice husk ash and the rubber phase, and thus results in improved mechanical properties for the resulting rice husk ash/natural rubber composite. The modulus of the composites will increase as the loading level of modified rice husk ash increases. A maximum tensile strength of 25.96 MPa for the composites can be obtained when the modified rice husk ash loading level is 4%.
基金
Funded by the Central Public-interest Scientific Institution Basal Research Fund for Chinese Academy of Tropical Agricultural Sciences(No.1630122018005).