期刊文献+

煤矿动力灾害本源预警方法关键技术与展望 被引量:17

Key technology and prospect of the original source early warning method for coal mine dynamic disaster
下载PDF
导出
摘要 针对制约煤矿冲击地压、煤与瓦斯突出、突水透水等动力灾害超前准确预警的科学难题和关键技术,提出了煤矿动力灾害本源预警方法和信息系统实现技术。基本思想是,在精准地质建模和采掘空间实时动态更新的基础上,通过数学转化器把煤矿动力灾害发生机制和演化规律的宏观定性描述及其相关的概化模型转化为可以在线计算的数学力学表述模型。实现煤矿动力灾害精准预警的关键技术:(1)通过研发全局全息感知技术,优化部署和安装能够精准采集微震、绝对地应力、矿压、位移、电磁辐射、瓦斯涌出量、瓦斯抽采量、涌水量、水位、水压和水质等传感器,实时监测煤矿动力灾害前兆表象信息;(2)通过研发复杂信息的自动识别器,实现监测数据的分解、滤波、增强、辨识、插补、反漂移和重建等模型和算法,对采集到的各种表象信息进行识别,达到去伪存真、丢弃糟粕,取其精华的目的;(3)通过研究精准转换器,实现从微震、绝对地应力、矿压、位移、电磁辐射、瓦斯涌出量、瓦斯抽采量、涌水量、水位、水压和水质等表象信息到围岩应力和潜能分布、开采扰动的几何形变、瓦斯含量和瓦斯压力分布、富水量和富水压力分布、煤层和围岩的孔隙度、抗压强度、抗拉强度、弹性模量等与煤矿动力灾害密切相关的本源信息的转换;(4)通过研发煤矿多场多种复合动力灾害的智能精准预警器,充分利用动态本源信息实现煤矿的冲击地压、煤与瓦斯突出、突水透水等动力灾害的超前精准预测预报和预警;(5)通过搭建煤矿重大动力灾害精准预警平台,利用大数据、云计算和人工智能技术,建立基于SOA架构的煤矿重大动力灾害精准预警服务平台,实现矿、集团公司和乃至全国的煤矿动力灾害的前兆表象信息的接入、处理、预测预警和推送服务。本研究旨在解决煤矿重大动力灾害精准预测预报的"技术瓶颈"和"卡脖子"难题,集成已有研发成果,研发面向煤矿重大动力灾害的精准预警平台,实现煤矿重大动力灾害超前感知、精准预警和预报。 In view of the scientific problems and key technologies that restrict the advance and accurate early warning of coal mine dynamic disasters,such as coal mine rock burst,coal and gas outburst,water inrush and water burst in coal mines,this paper proposes the original source early warning method of coal mine dynamic disasters and the information system realization technology.The basic idea is that on the basis of accurate geological modeling and real-time dynamic update of mining space,the macroscopic qualitative description of the mechanism and evolution law of coal mine dynamic disasters and the related generalized models are transformed into online computable mathematical and mechanical expression model through mathematical converter.The key technologies for achieving an accurate early warning of coal mine dynamic disasters are as follows:(1)Through the research and development of hologram sensing technology,the optimal deployment and installation of sensors can accurately collect information such as microseism,absolute geo-stress,mine pressure,displacement,electromagnetic radiation,gas emission quantity,gas extraction quantity,water inflow,water level,water pressure and water quality,etc.,and the precursory presentative information of coal mine dynamic disasters is monitored in real time.(2)By means of the research and development of automatic recognizer for complex information,the model and algorithm of processing monitoring data,such as data decomposition,data filtering,data enhancement,data identification,data interpolation,data anti-drift and data reconstruction,can be realized,and all kinds of collected presentation information are identified,so as to achieve the purpose of eliminating the false and retaining the true,taking the essence and discarding the dregs.(3)By researching the precision converter,the transformation from the presentation information,such as microseism,absolute geo-stress,mine pressure,displacement,electromagnetic radiation,gas emission quantity,gas extraction quantity,water inflow,water level,water pressure and water quality,to the original information closely related to the coal mine dynamic disaster,such as surrounding rock stress and potential distribution,geometric deformation of mining disturbance,gas content and gas pressure distribution,water-rich quantity and water-rich pressure distribution,porosity of coal seam and surrounding rock,compressive strength,tensile strength and elasticity modulus,can be realized.(4)Through the research and development of intelligent and accurate early warning devices for multiple complex dynamic disasters in coal mines,making full use of dynamic original source information,the advanced and precise prediction and early warning of dynamic disaster in coal mines such as rock burst,coal and gas outburst,water inrush and water burst can be realized.(5)By establishing a precise early warning platform for major dynamic disaster in coal mines,using big data,cloud computing and artificial intelligence technology,a precise early warning service platform for major dynamic disasters in coal mines based on SOA framework is established,which can realize the access,processing,prediction and early warning and push service of the precursory presentative information of coal mine dynamic disasters in mines,group companies and even the whole country.The main purpose of this paper is to overcome the"technical bottleneck"and tough problems of accurate prediction and early warning of major dynamic disaster in coal mines,integrate existing research and development achievements,and develop an accurate early warning platform for major dynamic disasters in coal mines to achieve an advanced perception,precise early warning and prediction of major dynamic disasters in coal mines.
作者 卢新明 阚淑婷 LU Xinming;KAN Shuting(Shandong Province Key Laboratory of Wisdom Mine Information Technology,Shandong University of Science and Technology,Qingdao 266590,China;Shandong Province Research Center of Intelligent Mine Software Engineering and Technology,Shandong Lionking Software Co.,Ltd.,Tai'an 271000,China)
出处 《煤炭学报》 EI CAS CSCD 北大核心 2020年第S01期128-139,共12页 Journal of China Coal Society
基金 国家重点研发计划资助项目(2017YFC0804406) 山东省重点研发计划资助项目(2016DJS02A05)
关键词 动力灾害 本源方法 数学表述 全息感知 精准转换 超前预警 dynamic disaster original early warning method mathematical expression hologram sensing precise converter early warning
  • 相关文献

参考文献34

二级参考文献449

共引文献1843

同被引文献389

引证文献17

二级引证文献114

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部