期刊文献+

基于滚动时间窗的ε-SVR煤炭价格预测模型研究 被引量:4

Research on coal price prediction model using the ε-SVR method based on sliding time window
原文传递
导出
摘要 从研究煤炭价格序列自身变化规律的角度,提出基于滚动时间窗的ε-SVR预测模型,通过数据重构获得输入与输出样本,随着时间推移,不断更新滚动时间窗的数据内容,从而建立动态的ε-SVR模型预测最新时点的煤炭价格。将此模型应用于秦皇岛港5500 kcal混煤价格的预测,分别进行了1期、3期、6期、9期及12期的价格预测,所有预测结果的平均误差值不超过3%,可见预测精度较高,预测效果良好。而且此模型数据获取简单、计算灵活方便,可应用于煤炭价格等非平稳时间序列的预测问题中,其结果可以为相关企业决策者提供科学有效的数据支持。 From the perspective of studying the regular pattern of changes in coal price series,a prediction model using method is proposed based on the sliding time window.In this method,input and output samples are obtained by data reconstruction,As time goes on,the data content of the sliding time window is constantly updated,thereby establishing a dynamicε-SVR model to predict coal prices at the latest time.This model was applied to the prediction of the 5500 kcal mixed coal price in Qinhuangdao Port,and the 1-term,3-term,6-term,9-term and 12-term predictions were carried out respectively,the average error value of all the prediction results did not exceed 3%,which shows that the prediction accuracy is high and the prediction effect is good.Moreover,the data of this model is simple to obtain,flexible and convenient to calculate,so which can be applied to the prediction problems of non-stationary time series such as coal prices,the results can provide scientific and effective data support for related enterprise decision makers.
作者 宁晖 周文文 Ning Hui;Zhou Wenwen(China Coal Energy Research Institute Co.,Ltd.,Xi’an 710054,China;School of Economics and Management,Beijing University of Technology,Beijing 100124,China)
出处 《煤炭经济研究》 2020年第3期12-18,共7页 Coal Economic Research
关键词 煤炭价格 滚动时间窗 ε-SVR 预测模型 coal price sliding time window ε-SVR prediction model
  • 相关文献

参考文献6

二级参考文献21

  • 1董继学,张虹.煤炭市场价格的灰色预测[J].哈尔滨师范大学自然科学学报,2005,21(2):20-21. 被引量:11
  • 2Vapnik V. The nature of statistical learning theory[M]. New York: Spring-Verlag,1995.
  • 3Suykens J A K. Nonlinear modeling and support vector machines [A]. Proceedings of the 18th IEEE Conference on Instrumentation and Measurement Technology [C]. Budapest, Hungary: IEEE, 2001.287-294.
  • 4Vapnik V. The nature of statistical learning theory[M]. New York: Spring-Verlag,1999.
  • 5中国煤炭工业协会,2015年一季度全国煤炭经济运行主要数据:关于当前煤炭经济运行情况的通报[EB/OL].(2015-04-10)[2015-04-30]http://www.cctd.tom.cn/detail/15/04/13/00469131/content.html.
  • 6国家统计局,2015年1-3月份全国固定资产投资(不含农户)增长13.5%[EB/OL].(2015-04-15)[2015-04-30]http://www.stats.gov.cn/tjsj/zxfb/201504/t20150415.712465.html.
  • 7赵唯.中煤协:2015年煤炭将减产5%,稳煤价是当务之急[N].中国能源报,2015-04-10.
  • 8国家能源局.关于调控煤炭总量优化产业布局的指导意见[EB/OL].(2014-10-12)[2015-04-30].http://www.yangben.cc/news/2014-10-30/515942.html.
  • 9王喜莲,陈亚军,张金锁,田玉仙.煤炭价格预测模型及实证[J].统计与决策,2008,24(17):118-119. 被引量:8
  • 10刘硕,何永秀,陶卫君,杨丽芳,张宇.基于最优加权法的煤炭市场价格组合预测模型[J].华东电力,2009,37(4):537-541. 被引量:9

共引文献102

同被引文献42

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部