期刊文献+

“双碳”目标背景下数智化技术赋能菜鸟全链路绿色物流应用研究 被引量:2

Research on the Application of Digital and Intelligent Technology Empowering Cainiao Full Link of Green Logistics Under the Background of “Double Carbon” Target
下载PDF
导出
摘要 “双碳”目标的提出为现代物流企业的绿色低碳发展指明了前进方向,同时,人工智能、大数据技术的飞速发展正助力现代物流快速进入数智化阶段。菜鸟物流同时抓住两大发展机遇,成功探索出了数智化技术赋能的全链路绿色物流发展模式,成为引领物流行业数智化技术“减碳”目标的先行者和标准制定者。文章采用SVM机器学习算法建立模型,完成了数智化技术赋能后的全链路物流各个环节减碳值测算和分析,厘清了数智化技术与减碳值的映射关系。通过采取多源数据分析等方式解决了模型中存在的过拟合和欠拟合问题,得出的映射关系结果真实可信。 The“double carbon”goals point out the direction of“green and low-carbon”for the development of modern logistics enterprises.At the same time,the rapid development of artificial intelligence and big data technology is helping modern logistics quickly enter the digital and intelligent stage.Cainiao logistics seized two major development opportunities,successfully explored a full link green logistics development model empowered by digital intelligent technology,and became a pioneer and standard setter leading the logistics industry in the goal of“carbon reduction”of digital intelligent technology.In this paper,SVM machine learning algorithm is used to establish the model,and the carbon reduction value of each link of the full link logistics after the digital intelligent technology is calculated and analyzed,so as to clarify the mapping relationship between digital intelligent technology and carbon reduction value.The problems of over fitting and under fitting in the model are solved by means of multisource data analysis,and the mapping relation results obtained are authentic.
作者 汪洋 陈运军 卢正才 李子彬 WANG Yang;CHEN Yunjun;LU Zhengcai;LI Zibin(School of Artificial Intelligence and Big Data,Luzhou Vocational and Technical College,Luzhou 646000,China)
出处 《物流科技》 2022年第14期52-55,共4页 Logistics Sci-Tech
基金 四川省社会科学重点研究基地四川省电子商务与现代物流研究中心课题“双碳目标背景下数智化技术赋能菜鸟全链路绿色物流应用研究”(DSWL-18)
关键词 “双碳” 数智化技术 全链路 SVM 映射关系 double carbon policy digital and intelligent technology full link SVM mapping relation
  • 相关文献

参考文献6

二级参考文献22

共引文献103

同被引文献30

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部