期刊文献+

基于奇异值分解的非均匀采样非线性系统的模糊模型辨识 被引量:7

Identification of fuzzy model of non-uniformly sampled nonlinear systems based on singular value decomposition
原文传递
导出
摘要 针对复杂、不确定、非均匀采样数据的非线性系统,提出一种基于矩阵奇异值分解(SVD)的模型结构辨识和参数估计的建模方法.首先,利用矩阵奇异值(SVD)分解算法分析各局部模型与奇异值、积累贡献率的关系,确定模糊模型的规则数,从而实现模型的结构优化;然后,为了克服递推最小二乘出现的误差积累、传递现象,采用奇异值分解的递推最小二乘估计模型的结论参数;最后,通过仿真实例验证所提出算法的有效性. A modeling method based on matrix singular value decomposition(SVD)for model structure identification and parameter estimation is proposed for the complex,uncertain and non-uniformly sampled data nonlinear systems.Firstly,the matrix singular value decomposition method is used to analyze the relationship among the local model and the accumulation contribution rates,and the rule number of the fuzzy model is determined.Thus,the structure optimization of the model is realized.Then,in order to overcome the error accumulation and transfer of recursive least squares,the conclusion parameters of the recursive least square estimation algorithm with singular value decomposition is adopted.Finally,a simulation example is given to illustrate the effectiveness of the proposed algorithm.
作者 王宏伟 谢丽蓉 WANG Hong-wei;XIE Li-rong(School of Electrical Engineering,Xinjiang University,Urumqi 830036,China;School of Control Science and Control Engineering,Dalian University of Technology,Dalian 116024,China)
出处 《控制与决策》 EI CSCD 北大核心 2020年第3期757-762,共6页 Control and Decision
基金 国家自然科学基金项目(61863034,51667021) 国家国际科技合作专项项目(2013DFG61520) 科技援疆计划项目(2018E02072).
关键词 非均匀采样系统 模糊模型 奇异值分解 递推最小二乘 结构辨识 nonuniformly sampled system fuzzy model singular value decomposition recursive least square structure identification
  • 相关文献

参考文献5

二级参考文献65

  • 1丁锋,陈通文,萧德云.非均匀周期采样多率系统的一种辨识方法[J].电子学报,2004,32(9):1414-1420. 被引量:33
  • 2雷英杰,王宝树,苗启广.直觉模糊关系及其合成运算[J].系统工程理论与实践,2005,25(2):113-118. 被引量:69
  • 3丁锋,萧德云.多变量系统状态空间模型的递阶辨识[J].控制与决策,2005,20(8):848-853. 被引量:23
  • 4Ding F, Qiu L, Chen T. Reconstruction of continuous-time systems from their non-uniformly sampled discrete-time systems[J]. Automatica, 2009, 45(2): 324-332.
  • 5Liu Y J, Xie L, Ding E An auxiliary model recursive least squares algorithm and its convergence for non-uniformly sampled multirate systems[J]. J of Systems and Control Engineering, 2009, 223(14): 445-454.
  • 6Sheng J, Chen T, Shah S L. Generalized predictive control for non-uniformly sampled systems[J]. J of Process Control, 2002, 12(8): 875-885.
  • 7Ding F, Chen T. Hierarchical least squares identification methods for multivariable systems[J]. IEEE Trans on Automatic Control, 2005, 50(3): 397-402.
  • 8Ding F, Chen T. Hierarchical identification of lifted state- space models for general dual-rate systems[J]. IEEE Trans on Circuits and Systems-I: Regular Papers, 2005, 52(6): 1179-1187.
  • 9Liu X G, Lu J. Least squares based iterative identification for a class of multirate systems[J]. Automatica, 2010, 46(3): 549-554.
  • 10张勇,杨慧中.有色噪声干扰输出误差系统的偏差补偿递推最小二乘辨识方法[J].自动化学报,2007,33(10):1053-1060. 被引量:18

共引文献31

同被引文献66

引证文献7

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部