期刊文献+

基于改进随机森林算法的企业破产预测研究 被引量:2

Research on Enterprise Bankruptcy Prediction Based on Improved Random Forest
原文传递
导出
摘要 企业破产数据中存在高维不平衡的特性,会导致模型预测性能降低且预测结果偏向于多数类。为了提高具有破产风险企业的预测准确率,将从特征、数据、模型3个方面综合考虑。首先提出一种Pearson相关系数特征提取规则进行特征选择,再使用已有的平衡化技术进行数据平衡化处理,最后提出了一种基于改变分类阈值的随机森林算法构建企业破产预测模型。在包含10173个公司数据集上的实验结果表明,本文的研究方法具有一定的优越性,对后续进行企业破产预测研究也具有较高的参考价值。 There is a high-dimensional imbalance in enterprise bankruptcy data,which will reduce the prediction performance of the model and the prediction results are biased to most classes.In order to improve the prediction accuracy of a bankruptcy risk enterprises,the characteristics,data and model will be considered comprehensively.First,this paper proposes a Pearson correlation coefficient feature extraction rule for feature selection,and then uses the existing balance technology to balance the data.Finally,a stochastic forest algorithm based on changing the classification threshold is proposed to construct the enterprise bankruptcy prediction model.The experimental results on the data sets of 10173 companies show that the research method in this paper has certain advantages and has a high reference value for the subsequent research on the prediction of enterprise bankruptcy.
作者 张康林 叶春明 ZHANG Kanglin;YE Chunming(Business School,University of Shanghai for Science and Technology,Shanghai 200093)
出处 《科技促进发展》 2021年第4期748-758,共11页 Science & Technology for Development
关键词 改进随机森林 企业破产预测 高维不平衡 特征提取 类平衡化 improved random forest enterprise bankruptcy prediction high-dimensional imbalance feature extract class balancing
  • 相关文献

参考文献2

二级参考文献32

  • 1汤必强,邓长虹,刘丽芳.复合神经网络在电力系统暂态稳定评估中的应用[J].电网技术,2004,28(15):62-66. 被引量:19
  • 2蒙肖莲,蔡淑琴,杜宽旗,寇建亭.商业银行客户流失预测模型研究[J].系统工程,2004,22(12):67-71. 被引量:19
  • 3Chen M C, Huang S H. Credit scoring and rejected instances reassigning through evolutionary computation techniques[ J]. Expert Systems with Applications, 2003, 24,433-441.
  • 4Lee T S, Chiu C C, Lu C J, et al. Credit scoring using hybrid neural discriminant technique [ J ]. Expert Systems with Applications, 2002, 23, 245-254.
  • 5Lopez J A, Saidenberg M R. Evaluating credit risk models[ J]. Journal of Banking and Finance, 2000, 24( 1 2) , 151-165.
  • 6West D. Neural network credit scoring models [ J ]. Computers and Operations Research, 2000, 27, 1131-1152.
  • 7Ahman E. Financial ratios, discfiminant analysis and the prediction of corporate bankruptcy [ J ]. The Journal of Finance, 1968, 23: 589-609.
  • 8Altman E. Corporate financial distress - a complete guide to predicting, avoiding and dealing with bankruptcy [ M]. New York: Wiley, 1983.
  • 9Ohlson J. Financial ratios and the probabilistic prediction of bankruptcy[ J]. Journal of Accounting Research, 1980, 18(1):109 - 131.
  • 10Zmijewski M E. Methodological issues related to the estimated of financial distress prediction models [ J]. Journal of Accounting Research, 1984, 22( 1 ) :59 - 82.

共引文献86

同被引文献22

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部