摘要
社会的快速发展给传统产业的发展带来了许多挑战,为了使传统产业能够在面临诸多不确定性下持续发展,预警是非常必要的。本文从经济发展水平、资源供应能力、科技投入力度和与社会、环境协调发展能力4个方面建立了福建纺织业可持续发展指标体系,并借助灰关联分析法分析了各指标与可持续发展之间的关联度。然后,利用遗传算法(Genetic Algorithm,GA)优化支持向量机(Support Vector Machine,SVM),构建了GASVM预警模型,预测了2015—2017年纺织业可持续发展能力,并将预测结果与实际相比较,发现预测结果与实际情况相符,且预测精度较高,说明所构建的预警模型具有较好的预警效果,其预警结果能够为产业可持续发展的警情监测提供有效信息。
The rapid development of society brings many challenges to the development of traditional industries.In order to make traditional industries sustainable in development when facing many uncertainties,early warning is very necessary.The paper establishes the sustainable development index system of Fujian textile industry from the aspects of economic development level,resource supply capacity,science and technology investment intensity,and the ability of coordinating development with society and environment.And Grey correlation analysis method is used to analyze the correlation degree between each index and sustainable development.Then,the SVM is optimized by genetic algorithm,and the GA-SVM warning model is built to predict textile industry sustainable development ability in 2015~2017.By comparing the prediction results with the actual situation,it is found that the prediction results are consistent with the actual situation and the prediction accuracy is high.It shows that the early-warning model has a good early-warning effect,and the prediction results can provide effective information for the warning monitoring of the sustainable development of the industry.
作者
孟小璐
张宁
高大伟
MENG Xiaolu;ZHANG Ning;GAO Dawei(Institute of technology,Fuzhou University of International Studies and Trade,Fuzhou 350202;College of Information&Business,Zhongyuan University of Technology,Zhengzhou 450002;College of Economics and Management,Zhengzhou Uniersity of Light Industry,Zhengzhou 450002)
出处
《科技促进发展》
CSCD
2020年第10期1204-1211,共8页
Science & Technology for Development
基金
2017年福建省中青年教师教育科研项目(JAT170729):基于数据挖掘福建省传统制造业可持续发展预警系统研究,负责人:孟小璐
2018年福州市社会科学规划项目(2018FZC37):提升福州市现代服务业可持续发展能力的对策研究,负责人:孟小璐
2018年河南省自然科学基金资助项目(182300410158):国际贸易技术溢出与中国工业行业碳排放绩效异质性:绩效评价、驱动机理与政策选择,负责人:高大伟