期刊文献+

动力电池低温极速自加热系统加热一致性及其影响因素的建模分析 被引量:6

Modeling Analysis of Heating Consistency and Influencing Factors of Low-temperature Extreme-speed Self-heating System of Battery
原文传递
导出
摘要 锂离子动力电池在低温环境下性能急剧衰退,制约了电动汽车在全气候范围内的推广应用。针对电触发极速加热系统:首先进行电热特性建模方法研究,开展电特性表征,建立考虑材料各向异性的电池产热及热扩散有限元模型,试验验证表明电流误差低于98.2 mA,温升误差小于4.09%;仿真研究不同占空比、电池初始SOC情况的加热特性,进而对电池组在加热过程中的加热行为一致性进行研究,结果表明可在270 s内从-20℃加热到20℃,最大温差低于3.94℃;分析电池单体不一致性与加热系统控制参数对加热行为一致性的影响特性,结果表明电池组温升不一致性与单体电池内阻标准差呈正线性相关,且受控制频率与占空比影响显著,其中占空比对温升影响幅度高达15%。 The performance of lithium-ion batteries decays sharply in a low-temperature environment,which restricts the promotion and application of electric vehicles in all-climate conditions.Based on an electric triggered extremely fast heating(XFH)system,the modeling method of electrothermal characteristics is researched.The electrical characteristics of the heating system are characterized,and then the finite element model of heat generation and thermal diffusion of the battery considering material anisotropy is established.The experimental verification indicated that the current error is less than 98.2 mA,and the temperature rise error is less than 4.09%.The influence of duty cycle and initial SOC on the heating performance is clarified by simulation,furthermore,the heating consistency of battery pack during the heating process is studied.The results show that the battery can be heated from-20℃to 20℃in 270 s,and the maximum temperature difference is less than 3.94℃.The effect of heating inconsistency on the battery cell inconsistency and the control parameters of the heating system is analyzed.The results show that there is a positive linear correlation between the temperature rise inconsistency and the internal resistance standard deviation,and it is significantly affected by the control frequency and duty cycle.The influence of duty ratio on temperature rise is up to 15%.
作者 陈泽宇 张渤 熊瑞 李世杰 CHEN Zeyu;ZHANG Bo;XIONG Rui;LI Shijie(School of Mechanical Engineering and Automation,Northeastern University,Shenyang 110819;National Engineering Laboratory for Electric Vehicles,Beijing Institute of Technology,Beijing 100081)
出处 《机械工程学报》 EI CAS CSCD 北大核心 2021年第22期226-236,共11页 Journal of Mechanical Engineering
基金 国家自然科学基金(51922006,51977029) 中央高校基本科研业务专项资金(N2003002)资助项目
关键词 电动汽车 动力电池 低温加热 外部短路 热管理 electric vehicles power battery low temperature heating external short circuit thermal management
  • 相关文献

参考文献6

二级参考文献24

  • 1JARRETT A, KIM 1 Y. Design optimization of electric vehicle bat- tery cooling plates for thermal performance [J]. Journal of Power Sources, 2011,196: 10359-10368.
  • 2张承宁,董玉刚,雷治国.锂离子动力电池组线路板通电生热式加热装置:中国,ZL201010581892.0[P].2011-05-25.
  • 3胡苋,陈则韶.量热技术和热物性测定[M].2版.合肥:中国科学技术大学出版社,2009.
  • 4马骁.电动汽车锂离子电池温度特性与加热管理系统研究[D].北京:北京理工大学机械与车辆学院,2010.
  • 5Ahmad APesaran, Steve Burch, Matthew Keyser. An Approach for Desighing Thermal Management Systems for Electric and Hybrid Vehicle Battery Packs [ C ]. The Fourth Vehicle Thermal Manage- ment Systems Conference and Exhibition, 1999.
  • 6雷治国.混合动力电传动车辆锂离子动力电池热管理研究[D].北京:北京理工大学,2013:4-28.
  • 7CHEN S C, WANG C C. Thermal Analysis of Lithium-ion Batter- ies [ J ]. Journal of Power Sources, 2005, 140 : 111-124.
  • 8陈科.电动车辆动力电池电场理论与热特性分析[D].北京:北京理工大学,2010:49-80.
  • 9Chakib Alaoui, Salameh Ziyad M. Modeling and Simulation of a Thermal Management System for Electric Vehicles [ C ]. The 29th Annual Conference of the IEEE Industrial Electronics Society, Roanoke, VA, United States,2003: 887-890.
  • 10秦大同,梁昌杰,杨亚联,陈方元.混合动力汽车用镍氢电池组散热性能仿真与试验[J].中国公路学报,2010,23(5):107-112. 被引量:12

共引文献111

同被引文献72

引证文献6

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部