期刊文献+

基于t-SVD的结构保持多视图子空间聚类 被引量:3

Structure Preserved Multi-view Subspace Clustering Based on t-SVD
下载PDF
导出
摘要 针对基于张量的多视图子空间聚类算法不能很好地保持样本之间的流形几何结构和多视图之间相似性的缺点,提出了一种结构保持的t-SVD多视图子空间聚类算法。首先将重构系数作为数据构造描述流形结构的邻接矩阵,其次通过图正则限制多视图数据的重构系数,然后利用各个视图的重构系数计算描述视图之间关系的相似矩阵,最后通过交替优化的方式来分别优化邻接矩阵及相似矩阵和多视图数据的重构系数,直至收敛。在3个数据库上分别进行了聚类实验,准确率分别达到了97.25%,96.97%,100%。实验结果表明,所提算法在聚类任务上具有较高的准确率。 To peruse the manifold structure and correlation among multi-view data for the tensor based subspace clustering algorithms,this paper proposes a novel algorithm named structure preserved multi-view subspace clustering based on t-SVD(t-SVDSpMSC).For both structures in multi-view data,we employ the graph regularization in which the graph is got adaptively by iteration.To optimize the objective function,we develop an alternative optimization algorithm to solve the final objective function.The accuracy of clustering using t-SVD-SpMSC on three datasets is 100%,91.51%,99.81%respectively,which shows the priority of the proposed method.
作者 张华伟 陆新东 朱小明 孙军涛 ZHANG Hua-wei;LU Xin-dong;ZHU Xiao-ming;SUN Jun-tao(Henan Institute of Metrology,Zhengzhou 450000,China)
出处 《计算机科学》 CSCD 北大核心 2022年第S02期525-530,共6页 Computer Science
关键词 子空间聚类 多视图学习 结构保持 张量 t-SVD Subspace clustering Multi-view learning Structure preserved Tensor t-SVD
  • 相关文献

参考文献2

共引文献43

同被引文献17

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部