摘要
现有仿真模型的温度适用范围在223~423 K,无法满足低温设计需求,且目前公开报道的低温CMOS工艺物理建模研究成果中模型不解析。为了在低温下高纯锗探测器近端集成CMOS读出电路,实现高分辨率的核探测技术,着重从阈值电压温度效应物理机理出发,通过分段线性化和主项近似积分法结合常温下的边界条件建立4~423 K深亚微米工艺阈值电压解析模型。常温下的边界条件获取过程中,在均匀掺杂长沟道器件阈值电压表达式基础上,分别考虑横向、纵向非均匀掺杂,以及漏致势垒下降效应带来的影响,通过求解简化的耗尽区准泊松方程,得到常温边界条件通式。实际使用过程中,可针对不同工艺通过测试得到通式里包含的4个因子。在SMIC 0.18μm工艺下用该模型与MEDICI软件仿真结果对比发现极其吻合,验证了低温建模方法的可行性。
The existing simulation model can not meet the low-temperature design requirements because the temperature application range of the existing simulation model is from 223 K to 423 K,and the model is not analyzed in the currently publicly reported research results of physical modeling of low-temperature CMOS process.Therefore,in order to integrate CMOS readout circuit at the proximal end of the highpurity germanium detector at low temperature to realize high-resolution nuclear detection technology,An analytical model of temperature between 4 K and 423 K deep submicron process threshold voltage,which bases on the physical mechanism of threshold voltage temperature effect,is established by piecewise linearization,principal term approximate integration method and boundary conditions at room temperature.In the process of obtaining the boundary conditions at room temperature,based on the threshold voltage expression of uniformly doped long channel devices,the effects of transverse and longitudinal non-uniform doping and leakage induced barrier drop effect are considered respectively.The general formula of constant temperature boundary conditionsare obtained by solving the simplified quasi Poisson equation in the depletion region.In actual use,the four factors contained in the general formula can be obtained through testing for different processes.Compared with the simulation results of MEDICI software under SMIC 0.18μm process,it is found that the model is very consistent,which verifies the feasibility of low temperature modeling method.
作者
刘海峰
何高魁
刘洋
郝晓勇
宛玉晴
田华阳
LIU Hai-feng;HE Gao-kui;LIU Yang;HAO Xiao-yong;WAN Yu-qing;TIAN Hua-yang(China Institute of Atomic Energy,Beijing 102413,China)
出处
《核电子学与探测技术》
CAS
北大核心
2023年第1期151-157,共7页
Nuclear Electronics & Detection Technology
基金
中核集团青年英才资助项目(FY202307000404)
中国原子能科学研究院稳定支持资助项目(WDJC-2019-08)