摘要
针对整数阶捕食模型种群间常数捕食率具有局限性的问题,结合分数阶动力系统理论和种群捕食特性提出一类具有Holling-Ⅱ型功能反应的分数阶共位群内捕食模型.利用分数阶微分方程的稳定性理论对捕食模型的动力学特性进行分析,给出模型在正平衡点处局部渐近稳定演化状态的充分性判据.研究结果表明,该模型有且仅有一个正平衡点,通过调节模型参数可使各个种群达到稳定生存、持续演化的状态.数值实验验证了理论推导的有效性和准确性.研究结论拓宽了分数阶捕食模型的适用性,有助于生态种群稳定的有效调控.
To solve the limitation of constant predation rate in integer-order predation model,a kind of fractional-order intraguild predation model with Holling-Ⅱfunctional response was proposed by combining fractional-order dynamic system theory and predation characteristics of populations.The stability theory of fractional differential equations was used to analyze the dynamic characteristics of the predator-prey model,and the sufficient criterion for the local asymptotically stable evolution state of the model at the positive equilibrium point was given.The results show that the model has only one positive equilibrium point,and each species can achieve stable survival and continuous evolution by adjusting the model parameters.The validity and accuracy of theoretical derivation are verified by numerical experiments.The research conclusion broadens the applicability of fractional-order predator-prey model and contributes to the effective regulation of ecological population stability.
作者
柴岩
郭晓雅
CHAI Yan;GUO Xiaoya(College of Science,Liaoning Technical University,Fuxin 123000,China)
出处
《辽宁工程技术大学学报(自然科学版)》
CAS
北大核心
2022年第2期189-192,共4页
Journal of Liaoning Technical University (Natural Science)
基金
辽宁省教育厅科学研究项目(LJ2019JL019)
关键词
分数阶捕食模型
共位群内
功能反应
正平衡点
稳定演化状态
fractional-order predator-prey model
intraguild
functional response
positive equilibrium point
stable evolution state