期刊文献+

一类分数阶共位群内捕食模型的动力学分析

Dynamic analysis of a fractional-order intraguild predation model
原文传递
导出
摘要 针对整数阶捕食模型种群间常数捕食率具有局限性的问题,结合分数阶动力系统理论和种群捕食特性提出一类具有Holling-Ⅱ型功能反应的分数阶共位群内捕食模型.利用分数阶微分方程的稳定性理论对捕食模型的动力学特性进行分析,给出模型在正平衡点处局部渐近稳定演化状态的充分性判据.研究结果表明,该模型有且仅有一个正平衡点,通过调节模型参数可使各个种群达到稳定生存、持续演化的状态.数值实验验证了理论推导的有效性和准确性.研究结论拓宽了分数阶捕食模型的适用性,有助于生态种群稳定的有效调控. To solve the limitation of constant predation rate in integer-order predation model,a kind of fractional-order intraguild predation model with Holling-Ⅱfunctional response was proposed by combining fractional-order dynamic system theory and predation characteristics of populations.The stability theory of fractional differential equations was used to analyze the dynamic characteristics of the predator-prey model,and the sufficient criterion for the local asymptotically stable evolution state of the model at the positive equilibrium point was given.The results show that the model has only one positive equilibrium point,and each species can achieve stable survival and continuous evolution by adjusting the model parameters.The validity and accuracy of theoretical derivation are verified by numerical experiments.The research conclusion broadens the applicability of fractional-order predator-prey model and contributes to the effective regulation of ecological population stability.
作者 柴岩 郭晓雅 CHAI Yan;GUO Xiaoya(College of Science,Liaoning Technical University,Fuxin 123000,China)
出处 《辽宁工程技术大学学报(自然科学版)》 CAS 北大核心 2022年第2期189-192,共4页 Journal of Liaoning Technical University (Natural Science)
基金 辽宁省教育厅科学研究项目(LJ2019JL019)
关键词 分数阶捕食模型 共位群内 功能反应 正平衡点 稳定演化状态 fractional-order predator-prey model intraguild functional response positive equilibrium point stable evolution state
  • 相关文献

参考文献9

二级参考文献52

  • 1郭学军,王水.国民经济第三产业发展预测的等维新息模型[J].数学的实践与认识,2005,35(4):6-9. 被引量:8
  • 2赵俊锋,李伟.一个经济周期模型的分岔与混沌[J].动力学与控制学报,2005,3(4):39-43. 被引量:3
  • 3张锦炎,冯贝叶.常微分方程几何理论与分支问题[M].北京:北京大学出版社,2009:145-149.
  • 4AHMED E,EI-SAYED A M A,EI-SAKA H A A.Equilibrium points stability and numerical solutions of fractional-order predator-prey and rabies models[J].ScienceDirect,2007,325(1):542-553.
  • 5PODLUBNY I.Fractional Differential Equations[M].America:Academic Press,1999:294-296.
  • 6Li Yan,Chen Yangquan,PODLUBNY L.Stability of fractional-order nonlinear dynamic systems:Lyapunov direct method and generalized Mittag-Leffler stability[J].Computers and Mathematicswith Applications,2010,59(5):1810-1821.
  • 7Li Yan,Chen Yangquan,Lgor Podlubny,et al.Mittag-Leffler stability of fractional order nonlinear dynamic systems[J].Automatic,2009,45(8):1965-1969.
  • 8马知恩,周义仓.常微分方程定性与稳定性方法[M].西安:科学出版社,2005:51-53.
  • 9Tian xiaohong,Xu Rui. Hopf bifurcation of a stage-structured predator-prey model with time delay[J]. Applied Mathematics A Journal of Chinese universities,2010,25(3) :285 - 292.
  • 10Yan X P,Chu Y D. Stability and bifurcation analysis for a delayed Lotka-Volterra predator-preysystem[J]. Journal of Computational and Applied Mathematics ?2006 ,196(1):198-210.

共引文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部