期刊文献+

改进FA算法在阴影条件下光伏MPPT中的应用 被引量:4

Application of improved FA algorithm in photovoltaic MPPT under shadow conditions
原文传递
导出
摘要 为解决光伏阵列最大功率点在外部环境条件变化时难以进行有效的跟踪,以及传统的最大功率点跟踪(MPPT)方法常常会导致搜索陷入局部极值而且响应速度慢的问题,采用理论分析和仿真的方法,提出一种基于萤火虫算法(FA)的变步长MPPT算法,对传统FA算法的结构和参数进行分析改进,将萤火虫初始位置分散定位在可能的峰值点电压处,并设计引入闪烁度以自适应调整萤火虫步长,使FA算法在MPPT控制方向更加实用化.研究结果表明:该算法能够快速且准确地跟踪最大功率点.研究结论有效地提高光伏阵列输出效率. In order to solve the problem that the maximum power point of PV array is difficult to effectively track when the external environment condition changes,and the traditional method of MPPT(Maximum Power Point Tracking)often leads to search into the local extreme value and the problem of slow response,this paper proposes a FA(Firefly Algorithm)based variable step size MPPT algorithm,analyzes and improves the structure and parameters of traditional FA algorithm,and disperses the firefly initial position locating in the peaks of the possible voltage.In addition,scintillation degree is designed to adjust the firefly step size adaptively,so that FA algorithm can be more practical in MPPT control direction.Algorithm and the simulation results show that the algorithm can quickly and accurately track the maximum power point.Research conclusions effectively improve the efficiency of PV array output.
作者 付华 张彤 于田 杨傲 FU Hua;ZHANG Tong;YU Tian;YANG Ao(Faculty of Electrical and Control Engineering,Liaoning Technical University,Huludao 125105,China;Fuxin Electric Power Supply Company,State Grid Liaoning Electric Power Supply Company Limited,Fuxin 123000,China)
出处 《辽宁工程技术大学学报(自然科学版)》 CAS 北大核心 2021年第2期156-162,共7页 Journal of Liaoning Technical University (Natural Science)
基金 国家自然科学基金(51974151)
关键词 光伏发电 最大功率点跟踪 改进萤火虫算法 变步长 闪烁度 PV maximum power point tracking improved firefly algorithm variable step size flicker
  • 相关文献

参考文献7

二级参考文献60

  • 1陈兴峰,曹志峰,许洪华,焦在强.光伏发电的最大功率跟踪算法研究[J].可再生能源,2005,23(1):8-11. 被引量:47
  • 2茆美琴,余世杰,苏建徽.带有MPPT功能的光伏阵列Matlab通用仿真模型[J].系统仿真学报,2005,17(5):1248-1251. 被引量:428
  • 3陈维,沈辉,舒碧芬.光伏系统跟踪效果分析[J].中国科学技术大学学报,2006,36(4):355-359. 被引量:19
  • 4赵吉,孙俊,须文波.一种求解多峰函数优化问题的量子行为粒子群算法[J].计算机应用,2006,26(12):2956-2960. 被引量:15
  • 5KRISHNAND K N,GHOSE D. Glowworm swarm optimisation for simultaneous capture of mutiple local optima of multimodal functions[J]. Swarm Intelligence,2009,3(2):87-124.
  • 6KRISHNAND K N,GHOSE D. Glowworm swarm optimisation: A new method for optimising multi-modal functions[J]. The International Journal of Computational Intelligence Studies,2009,1(1):93-119.
  • 7CASTROL,ZUBEN L. Learning and optimization the clonal selection principle evolution computation[J]. IEEE Transactions on Evolutionary Computation,2002,6(3):34-50.
  • 8曾国泰.萤火虫最佳化分群演算法[D]. 台北:大同大学资讯经营所,2008.
  • 9DEEP K,BANSAL J C. Mean particle swarm optimization for function optimization[J]. The International Journal of Computational Intelligence Studies,2009,1(1):72-92.
  • 10Patel H, Agarwal V. MATLAB-based modeling to study the effects of partial shading on PV array characteristics [J]. IEEE Transaction on Energy Conversion, 2008,23(1): 302-310.

共引文献278

同被引文献65

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部