期刊文献+

不同气流组织方式对厨房PM2.5分布影响及其数值模拟

Effect of Different Air Distribution Modes on the Distribution of PM2.5 in Kitchen and its Numerical Simulation
下载PDF
导出
摘要 为了研究厨房内PM2.5浓度分布水平,以北京某住宅厨房为原型,利用Fluent软件对其进行模拟分析。不同的工况条件下,有不同的气流组织方式,进而影响厨房内PM2.5浓度分布。研究表明:室内细颗粒物由室内气流带动,其分布与室内气流组织密切相关;3种工况下,细颗粒物浓度分布大体相同,局部会有不同,且下送风工况下厨房人体呼吸区细颗粒物浓度最低。 In order to study the levels of PM2.5 concentration distribution inside the kitchen,the fluent software is utilized for simulation analysis with Beijing residential kitchen as the prototype.For different operating conditions have different way of air distribution,thus the PM2.5 concentration distribution is affected inside the kitchen.Research show that the PM2.5 concentration distribution is affected by the indoor temperature,because of the thermal buoyancy making a large number of indoor PM2.5 accumulate on the ceiling.PM2.5 concentration distribution is also affected by indoor air,because it usually follows airflow.The condition of underfloor air supply makes PM2.5 concentration in breathing zone of the kitchen is the lowest.
作者 袁扬 朱能 王清勤 李春龙 YUAN Yang;ZHU Neng;WANG Qing-qin;LI Chun-long(School of Architecture,Tianjin University,Tianjin 300354,China;China Academy of Building Research,Beijing 100013,China)
出处 《建筑节能》 CAS 2020年第6期97-101,共5页 BUILDING ENERGY EFFICIENCY
基金 住房城乡建设部2018年科学技术项目计划资助项目(2018-R1-015)
关键词 厨房 气流组织 细颗粒物(PM2.5) 数值模拟 kitchen air distribution fine particulate matter(PM2.5) numerical simulation
  • 相关文献

参考文献2

二级参考文献37

  • 1洪天真,江亿,彦启森.供热空调系统保证率设计的概念[J].暖通空调,1994,24(6):10-12. 被引量:5
  • 2张颖,赵彬,李先庭.室内颗粒物的来源和特点研究[J].暖通空调,2005,35(9):30-36. 被引量:33
  • 3JANSSEN N A, HOEK G, SIMIC-LAWSON M, etal. Black carbon as an additional indicator of the adverse health effects of airborne particles compared with PM10 and PM2. 5 [J]. Environmental Health Perspectives, 2011, 119(12) : 1691-1699.
  • 4WEICHENTHAL S, VILLENEUVE P J, BURNETT R T, et al. Long-term exposure to fine particulate matter: association with nonaccidental and cardiovascular mortality in the agricultural health study cohort [ J]. Environmental Health Perspectives, 2014, 122(6): 609-615.
  • 5CAKMAK S, DALES R, KAURI L M, et al. Metal composition of fine particulate air pollution and acute changes in cardiorespiratory physiology [ J ] Environmental Pollution, 2014, 189(12): 208-214.
  • 6KIM K H, KABIR E, KABIR S. A review on the human health impact of airborne particulate matter [J]. Environment International, 2015, 74:136-143.
  • 7DIAPOULI E, ELEFTHERIADIS K, KARANASIOU A A, et al. Indoor and outdoor particle number and mass concentrations in Athens. Sources, sinks and variability of aerosol parameters [J]. Aerosol & Air Quality Research, 2011, 11(6): 632-642.
  • 8MASSEY D, MASIH J, KULSHRESTHA A, et al. Indoor/outdoor relationship of fine particles less than 2. 5 μm (PM2. 5) in residential homes locations in central Indian region[J]. Building and Environment, 2009, 44(10) ,2037-2045.
  • 9CYRYS J, PITZ M, BISCHOF W, et al. Relationship between indoor and outdoor levels of fine particle mass, particle number concentrations and black smoke under different ventilation conditions [-J]. Journal of Exposure Analysis and Environmental Epidemiology, 2004, 14(4).. 275-283.
  • 10OZKAYNAK H, XUE J, SPENGLER J, et al. Personal exposure to airborne particles and metals: results from the particle TEAM study in Riverside, California[J]. Journal of Exposure Analysis Environmental Epidemiology, 1996, 6 (1) : 57- 78.

共引文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部