期刊文献+

基于无监督机器学习的核电厂支吊架智能布置研究 被引量:2

Study on Intelligent Layout of Supports and Hangers in Nuclear Power Plant Based on Unsupervised Machine Learning
原文传递
导出
摘要 基于无监督机器学习技术和Spark云平台,将"无监督机器学习"与"支吊架布置设计"相结合,解决传统核电厂支吊架设计过程烦琐、费时耗力、出错率高、人力成本高等问题,解决"人工智能+云计算+支吊架设计"设计模式中训练样本集数量不足的问题,大大降低了支吊架布置设计过程中重复率高、迭代效率慢等问题,验证了低样本数量支吊架布置设计的可行性与准确性。 Based on the unsupervised machine learning technology and spark cloud platform,combining"unsupervised machine learning"with"support and hanger layout design",this paper solves the problems of cumbersome,time-consuming,high error rate and high labor cost in the traditional support and hanger design process of nuclear power plant,and solves the problem of insufficient training sample set in the design mode of"artificial intelligence+cloud computing+support and hanger design",which is greatly improved It reduces the problems of high repetition rate and slow iteration efficiency in the process of support and hanger layout design,and verifies the feasibility and accuracy of support and hanger layout design with low sample number.
作者 肖韵菲 黄捷 孙冠宇 高希龙 陈建国 文婷婷 文剑 XIAO Yunfei;HUANG Jie;SUN Guanyu;GAO Xilong;CHEN Jianguo;WEN Tingting;WEN Jian(Key Laboratory of Nuclear Reactor System Design Technology,China Nuclear Power Research and Design Institute,Sichuan 610213,China;Sichuan Electric Power Design Consulting Co.,Ltd.,Sichuan 610041,China)
出处 《电子技术(上海)》 2021年第1期58-61,共4页 Electronic Technology
关键词 无监督机器学习 SPARK 支吊架布置 云计算 K-MEANS聚类 unsupervised machine learning spark hanger layout cloud computing K-means clustering
  • 相关文献

参考文献1

二级参考文献10

共引文献4

同被引文献9

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部