期刊文献+

流态冰蓄冷式空调衣的设计及制冷特性研究 被引量:5

Study on the design and cooling performance of air conditioning clothing with fluidized ice as coolant
原文传递
导出
摘要 为解决人体在室外高温下的热危害问题,提出一种流态冰作为蓄冷源的相变式空调衣系统,并对其制冷性能进行分析。计算发现,与液冷式空调衣系统相比,该流态冰系统载冷剂充注量最大可降低58.6%。流态冰的含冰率越高,充注量越低。在外界环境高达45℃时,只需充注2.14 kg的流态冰,即可在2 h内确保人体热舒适性。流态冰管网管径为6 mm时,可充分保障系统冷源的均匀性、结构布置的合理性。 In order to solve the problem of thermal hazard of human body in outdoor high temperature,a phase change air conditioning clothing system with fluidized ice as a cold storage source was proposed,and its refrigeration performance was analyzed.It is found that compared with the liquid-cooled air conditioning clothing system,the fluidized ice system can reduce the charging capacity of refrigerant by 58.6%at most.The higher the ice content is,the lower the filling quantity is.When the external environment is up to 45℃,only 2.14 kg of ice slurry needs to be filled to maintain human thermal comfort within 2 hours.When the diameter of fluidized ice pipe network is 6 mm,the uniformity of cold source and feasibility of structure arrangement of the system can be guaranteed at the same time.
作者 高海庆 李皖皖 王军 Gao Haiqing;Li Wanwan;Wang Jun(Zhengzhou Baofeng Refrigeration Engineering Machinery Co.,Ltd,Zhengzhou 450000,China;Henan University of Technology,Zhengzhou 450001,China)
出处 《低温与超导》 CAS 北大核心 2020年第2期57-62,共6页 Cryogenics and Superconductivity
基金 国家自然科学基金(51708180) 河南工业大学高层次人才启动基金(31401182)。
关键词 流态冰 空调衣系统 制冷特性 结构设计 Fluidized ice Air conditioning clothing system Cooling performance Structure design
  • 相关文献

参考文献6

二级参考文献33

  • 1钟晓晖,吴玉庭,张行周,杜春旭,马重芳.用于个人冷却的微型制冷系统研究现状[J].暖通空调,2007,37(1):38-42. 被引量:10
  • 2曾彦彰,邓中山,刘静.基于微型风扇阵列系统的人体降温空调服[J].纺织学报,2007,28(6):100-105. 被引量:37
  • 3涂岱昕,高温定向强辐射环境下人体生理表现参数的实验与评价研究[D].天津:天津大学,2008:53.
  • 4HOLMER I. Protective clothing in hot environ- ments[J]. Industrial Health, 2006, 44 (3) : 404 - 413.
  • 5NUNNELEY S A. Heat stress in protective clothing: interactions among physical and physiological factors[ J~. Scandinavian Journal of Work: Environment and Health, 1989, 15 (Suppl. 1): 52-57.
  • 6BRAKE D J. The deep body core temperature, physical fatigue and fluid status of the thermally stressed workers and the development of thermal work limit as an index of heat stress [ D ]. Austria: Curtin University of Technology, 2002 : 45 - 47.
  • 7CHEUNG S S, PETERSEN S R, MCLELLAN T M. Physiological strain and countermeasures with fire- fighting[J]. Scandinavian Journal of Medicine & Science in Sports, 2010, 20:103 - 116.
  • 8CARTER J M, RAYSON M P, WILKINSON D M, et al. Strategies to combat heat strain during and after firefighting[ J ]. Journal of Thermal Biology, 2007, 32 : 109 - 116.
  • 9BARR D,GREGSON W, SUTTON L, et al. A practical cooling strategy for reducing the physiological strain associated with firefighting activity in the heat [ J ].Economics, 2009, 52 (4) : 413 -420.
  • 10MONDAL S. Phase change materials for smart textiles: an overview[ J ]. Applied Thermal Engineering, 2008, 28 : 1536 - 1550.

共引文献66

同被引文献24

引证文献5

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部