期刊文献+

电磁轴承定子磁极不同拓扑结构的磁场分析 被引量:1

Magnetic Field Analysis of AMB with Different Magnetic Pole Topologies for Fault-tolerant
下载PDF
导出
摘要 当电磁轴承设计有容错要求时,往往采用磁极独立驱动的方案,磁极的拓扑结构体现更加复杂多样化。本文以8极结构独立驱动的径向电磁轴承为研究对象,对电磁轴承定转子本体模型进行网格剖分,以变分原理和分片差值为基础的数值分析,来确定网格内各点的矢量磁位,得到了不同拓扑结构(全N(S)型、NSNS型和NNSS型)下,电磁轴承定转子磁极磁场分布,给出了这3种拓扑结构下转子和定子的二维磁力线分布图、磁通密度分布图以及转子和定子间气隙的磁密波形图,从而以磁场分布的角度,分析这3种拓扑结构电磁轴承对转子稳定悬浮的影响。 When the electromagnetic bearing design has the requirement of fault tolerance,the scheme of independent drive of magnetic poles is often adopted,and the topology of magnetic poles is more complex and diversified.8 pole structure based on the independent drive radial electromagnetic bearing as the research object,the magnetic bearing stator grid subdivision ontology model,based on the variational principle and divided difference of numerical analysis,to determine the vector magnetic potential of each point in the grid,the different topology(total N(S),NSNS and NNSS),electromagnetic bearing rotor pole magnetic field distribution of the three kinds of topology structure is given under the two-dimensional magnetic line of force distribution of the stator and rotor,the magnetic flux density distribution and the air gap between rotor and stator flux density waveform figure,with the Angle of the magnetic field distribution,The influence of the three topological electromagnetic bearings on the stable suspension of rotor is analyzed.
作者 王佳良 蒋科坚 WANG Jialiang;JIANG Kejian(College of Information and Technology,Zhejiang Sci-Tech University,Hangzhou 310018,China)
出处 《智能计算机与应用》 2021年第4期57-61,64,共6页 Intelligent Computer and Applications
基金 国家自然科学基金(11272288) 浙江省自然科学基金(LY18E050017)
关键词 电磁轴承 容错控制 拓扑结构 ANSYS 磁场 Active magnetic bearing(ABM) Fault-tolerant Topologies ANSYS Magnetic field
  • 相关文献

参考文献4

二级参考文献31

  • 1景敏卿,周健,吴步洲,虞烈.基于电流重新分配的电磁轴承的线圈容错控制[J].系统仿真学报,2005,17(z2):121-124. 被引量:3
  • 2吴步洲,孙岩桦,王世琥,虞烈.径向电磁轴承线圈容错控制研究[J].机械工程学报,2005,41(6):157-162. 被引量:12
  • 3LYONS J P, PRESTON M A, GURUMOORTHY R, et al. Design and control of a fault-tolerant active magnetic bearing system for aircraft engines [C]//Intemational Center for Magnetic Beatings. Proc. of the 4th International Symposium on Magnetic Bearings, ETH Zurich, Switzerland, 1994: 449-454.
  • 4MASLEN E H, MEEKER D C. Fault tolerance of magnetic bearings by generalized bias current linearization[J]. IEEE Transactions on Magnetics, 1995, 31(3): 2304-2314.
  • 5MEEKER D C. Optimal solutions to the inverse problem in quadratic magnetic actuators[D]. Virginia: University of Virginia, 1996.
  • 6SCHRODER P, CHIPPERFIELD A J, FLEMING P J. et al. Fault tolerant control of active magnetic bearings[C]// Proc. of Industrial Electronics, July 6-8, 1998. IEEE International Svmoosium Conf., 1998: 573-578.
  • 7UHN J N. Fault-tolerant control of heteropolar magnetic bearings[D]. Texas: Texas A&M University, 1999.
  • 8MING H L, ALAN B P. Fault-tolerant homopolar magnetic beatings[J]. IEEE Transactions on Magnetics,2004, 40(5): 3308-3318.
  • 9Acht V M G, Damen A A H, Bosch P P J. On self-sensing magnetic levitated systems. In.. Proceedings of the 6th International Symposium on Magnetic Bearings, Cambridge, MA, 1998:538-547.
  • 10Noh M D, Maslen E H. Self-sensing magnetic bearings using parameter estimation. IEEE Transactions on Instrmentation and Measurement, 1997, 46(1): 45-50.

共引文献14

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部