期刊文献+

代价敏感的容器多目标资源放置优化算法

Research on the Optimization algorithm of multi-target resource placement in cost-sensitive container
下载PDF
导出
摘要 自Docker问世以来,微服务也得到了快速的发展,企业、组织等纷纷使用微服务架构进行容器化开发。为了管理数以万计的容器应用,各种容器编排框架应运而生,但容器调度过程中带来的能耗高、资源利用率低等问题非常显著。研究合理的容器放置,能有效的减缓此类问题。针对CPU、内存和带宽三类资源利用率低等问题,提出了容器多目标资源放置算法CMR(Container Multi-target Resource)。实验结果证明CMR算法能够将容器放置到与自身资源请求大小最吻合的虚拟机上,对比FF、LF、MF和RS算法能够同时节省CPU能耗34.0%,内存能耗33.8%,带宽能耗26.5%。 Since the advent of Docker,microservices have developed rapidly,and enterprises and companies have gradually begun to use the microservices architecture for container development. In order to manage tens of thousands of container applications,various container orchestration frameworks have emerged,which brings about high energy consumption and low resource utilization in the container scheduling process. Reasonable container placement can effectively alleviate such problems. We propose a container multi-target resource CMR(Container Multi-target Resource) for the low utilization of CPU,memory and bandwidth. The experimental results show that the CMR algorithm can place the container on the virtual machine that best matches the size of its own resource request. Compared with the FF,LF,MF and RS algorithms,it can save CPU power consumption by 34.0%,memory energy consumption by 33.8%,and bandwidth energy consumption by 26.5%.
作者 曹成成 李志聪 CAO Chengcheng;LI Zhicong(School of Computer Science Technology and Information Engineering,Harbin Normal University,Harbin 150025,China)
出处 《智能计算机与应用》 2020年第4期50-53,56,共5页 Intelligent Computer and Applications
基金 国家自然科学基金项目(61202458,61403109) 黑龙江省自然科学基金项目(F2017021)
关键词 容器 多目标 资源利用率 能耗 Container Multi-objective Resource utilization Power consumption
  • 相关文献

参考文献1

二级参考文献17

  • 1Tian Wen-hong, Zhao Yong. Cloud computing resource scheduling management[M]. Beijing:National Defense Industry Press,2011.
  • 2Armbrust M,Fox A,Griffith R, et al. A view of cloud computing [J]. Communication of the ACM,2010,53(4) :50-58.
  • 3Mark Stillwell,David Schanzenbach,Frederic Vivien ,et al. Resource allocation algorithms for virtualized service hosting platforms [ J ]. Journal of Parallel and Distributed Computing ,2010,70(9) :962-974.
  • 4Kong Xiang-zhen,Lin Chuang,Jiang Yi-xin,et al. Efficient dynamic task scheduling in virtualized data centers with fuzzy prediction [J]. Journal of Network and Computer Applications,2011,34(4): 1068-1077.
  • 5Daniel Wameke,Odej Kao. Exploiting dynamic resource allocation for efficient parallel data processing in the cloud[ J]. IEEE Transactions on Parallel and Distributed Systems,2011,22(6) :1045-9219,.
  • 6Hyser C,Mckee B, Gardner R, et al. Autonomic virtual machine placement in the data center[R]. HP Labs Technical Report,2007.
  • 7Xu J, Fortes J. Multi-objective virtual machine placement in virtualized data center environments [ C ]. Proceedings of IEEE/ACM International Conference on Green Computing and Communications, Hang Zhou,2010:179-188.
  • 8Chen M,Zhangy H,Ya-Yunn S,et al. Effective VM sizing in virtualized data centers [ C]. Proceedings of the 12th IFIP/IEEE International Symposium on Integrated Network Management, Dublin, 2011:594-601.
  • 9Eslam Mohammadi ’ Mohammadbager Karimi,Saeed Rasouli Heikalabad. A novel virtual machine placement in cloud computing [J]. Australian Journal of Basic and Applied Sciences, 2011, 5 (10):1549-1555.
  • 10Mark C C T,Niyato D,Tham Chen-Khong. Evolutionary optimal vir- tual machine placement and demand forecaster for cloud computing [ C]. Proceedings of IEEE International Conference on Advanced In- formation Networking and Applications,Singapore,2011:348-355.

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部