期刊文献+

浅谈大数据在精密惯性仪表中的应用

Discussions of Big Data Application in Precision Inertial Instruments
原文传递
导出
摘要 精密惯性仪表被广泛应用于地面武器、飞机、舰船、航天器中,其作用是敏感、测量载体加速度和姿态等信息,确定载体的运动轨迹参数,实现对载体的精密导航、定向定位,在武器装备中具有非常重要的地位。首先从构成精密惯性仪表的精密微细结构出发,对大数据在制造过程中存在的问题进行了分析。通过对典型惯性产品装配过程的分析,总结了惯性仪表在装配过程中对产品精度和性能产生影响的几类微观效应;其次,通过分析"熵"在我国制造领域中的应用,提出了"熵"理论在惯性仪表装配过程中的应用思路;最后,结合上述分析结果,以三维点云数字化虚拟装配技术在惯性仪表中的应用和"熵"在惯性仪表故障识别与误差建模方向上的应用为例,给出了具体的研究内容、技术流程和研究结果。 The precision inertial instruments are widely used in precision navigation,orientation,trajectory parameter determination of ground weapon,airplane,ship and spacecraft by sensing and measuring the information of acceleration and position.So it plays an important role in weapons and equipments.Firstly,the problems occurred in big data manufacturing are analyzed based on the precision microstructure comprising precision inertial instrument.Secondly,the micro-effects affecting the accuracy and performance of the instruments during the assembly are summarized by analyzing the process of precision inertial instruments assembly.Then,the ideas of"entropy"theory application in precision inertial instruments assembly are given by analyzing application of"entropy"theory used in manufacturing.Finally,the examples that the application of 3 D point cloud digital virtual assembly theory in inertial instruments and fault diagnosis and error modeling based on entropy are given.Meanwhile,the main contents,process and results of each study are expounded based on the conclusion made above.
作者 陈晓磊 陈效真 张福礼 杨文超 严小军 CHEN Xiao-lei;CHEN Xiao-zhen;ZHANG Fu-li;YANG Wen-chao;YAN Xiao-jun(Laboratory of Science and Technology on Ultra-precision Aerospace Control Instrument,Beijing 100039;Beijing Institute of Aerospace Control Devices,Beijing 100039)
出处 《导航与控制》 2020年第6期1-12,共12页 Navigation and Control
基金 装备预研航天科技联合基金(编号:6141B061402)
关键词 惯性仪表 大数据 精密装配 故障诊断 误差建模 inertial instruments big data entropy precision assembly fault diagnosis error modeling
  • 相关文献

参考文献17

二级参考文献227

共引文献360

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部