期刊文献+

结合数据增广和迁移学习的高分辨率遥感影像场景分类 被引量:13

Scene classification of high-resolution remote sensing image combining data augmentation and transfer learning
原文传递
导出
摘要 深度学习在计算机视觉领域取得了显著的成果,如图像分类、人脸识别、图像检索等。对于遥感领域而言,获取用于训练CNN的有标签数据集通常是一个重大挑战。本文研究了如何将CNN用于高分辨率遥感影像的场景分类,为了克服缺乏大量有标签遥感影像数据集的问题,结合CNN采用了两种技术:数据增广和迁移学习。在UC Merced Land Use数据集上,验证了VGG16、VGG19、Res Net50、InceptionV3、Dense Net121等5种网络的性能,分别达到了98.10%、96.19%、99.05%、97.62%、99.52%的分类准确率。 Deep learning has achieved remarkable results in the field of computer vision,such as image classification,face recognition,image retrieval and so on.For remote sensing,obtaining a labeled dataset for training DCNN is often a major challenge.In this paper,the use of DCNN for scene classification in high-resolution remote sensing imagery is investigated.In order to overcome the lack of a large number of labeled remote sensing image datasets,two technologieswere combined with DCNN:data augmentation and transfer learning.On the UC Merced Land Use dataset,the performances of 5 networks including VGG16,VGG19,Res Net50,Inception V3,and Dense Net121 were verified,which achieved classification accuracy of 98.10%,96.19%,99.05%,97.62%,and99.52%,respectively.
作者 乔婷婷 李鲁群 QIAO Tingting;LI Luqun(School of Information and Mechanical Engineering,Shanghai Normal University,Shanghai 201400,China)
出处 《测绘通报》 CSCD 北大核心 2020年第2期37-42,共6页 Bulletin of Surveying and Mapping
基金 上海教委重点项目(304-AC9103-19-368405029) 教育部产学合作协同育人项目(309-C-6105-18-060).
关键词 高分辨率遥感影像 场景分类 卷积神经网络 数据增广 迁移学习 high-resolution remote sensing imagery scene classification convolutional neural network data augmentation transfer learning
  • 相关文献

参考文献5

二级参考文献55

共引文献349

同被引文献96

引证文献13

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部