摘要
为了研究高功率脉冲磁控溅射TiNb靶材等离子特性及其对薄膜结构性能的影响,采用高功率脉冲磁控溅射技术(HiPIMS),通过改变TiNb靶材的峰值溅射功率在Si(100)和316L基体上沉积TiNb薄膜,利用等离子发射光谱(OES)研究峰值功率对基片前离子原子比的影响,采用X射线衍射技术(XRD)、扫描电子显微镜(SEM)、透射电镜(TEM)、纳米硬度计、球盘往复摩擦机以及电化学工作站等试验设备,研究Ti、Nb离子原子比对TiNb薄膜微观结构、力学性能及耐腐蚀性能的影响。结果表明,Ti和Nb离子原子比率随峰值功率增加而增加,在峰值功率为59.42 kW时Ti的离子原子比达到60%,Nb的离子原子比达到56.9%,离化原子比相对于峰值功率35.98 kW时增加1倍。不同峰值功率下制备的薄膜均出现BCC结构的β-TiNb(110),β-TiNb(200)和β-TiNb(211)衍射峰,薄膜以纳米晶存在,高的Ti、Nb离子原子比可以增加晶粒尺寸,降低TiNb薄膜残余压应力,引起薄膜的硬度、耐磨性以及耐腐蚀性能下降。低的峰值功率下可以得到力学性能及耐腐蚀性能更好的薄膜。
In order to study the plasma characteristics of high power impulse magnetron sputtering TiNb target and its effect on the structure and properties of thin films.TiNb thin films are deposited on Si(100)and 316L substrates by high-power impulse magnetron sputtering(HiPIMS).Optical emission spectroscopy(OES)is used to study the effect of peak power on the ratio of ions to atoms in front of the substrate.X-ray diffraction(XRD),ioscope(SEM),ioscope(SEM),the effects of Ti and Nb ion atom ratio on the microstructure,mechanical properties and corrosion resistance of TiNb thin films are investigated by TEM,nano-hardness tester,spherical disc reciprocating friction machine and electrochemical workstation.The results show that the ratio of Ti and Nb ion atom ratio increases with the increase of peak power.When the peak power is 59.42 kW,the ion atom ratio of Ti and Nb reaches 60%and 56.9%,respectively.The ratio of ionized atoms increases one times compared with the peak power of 35.98 kW.The diffraction peaks ofβ-TiNb(110),β-TiNb(200)andβ-TiNb(211)of BCC structure are observed in the films prepared at different peak powers,and the films exist as nano-crystals.The high Ti and Nb ion atom ratio can increase the grain size and reduce the residual stress of TiNb films,resulting in the decrease of the hardness,wear resistance and corrosion resistance of the films.And the films with better mechanical properties and corrosion resistance can be obtained at lower peak power.
作者
陈畅子
李延涛
曾小康
马东林
姜全新
冷永祥
CHEN Changzi;LI Yantao;ZENG Xiaokang;MA Donglin;JIANG Quanxin;LENG Yongxiang(School of Material science and Engineering,Southwest Jiaotong University,Chengdu 610031,China;School of mechanical engineering,Jingchu University of Technology,Jingmen 448000,China;College of physics and Engineering Technology,Chengdu Normal University,Chengdu 611130,China)
出处
《中国表面工程》
EI
CAS
CSCD
北大核心
2022年第5期254-263,共10页
China Surface Engineering
基金
表面物理与化学重点实验室(6142A02190402)
荆门市科技计划(2020YFYB051)资助项目