期刊文献+

基于启发式算法的异常用电检测研究 被引量:1

Research on Abnormal Power Consumption Detection Based on Heuristic Algorithm
原文传递
导出
摘要 随着社会经济的高速发展,电网规模不断增大,电网容量不断提高,电力损耗问题日趋严重,为了合理高效地利用电力,对于网用电量异常的研究十分关键。针对电网用电量异常的问题,对某城市一区域电网用电量数据进行逻辑分组聚类预处理,并运用启发式算法构建两种针对性的启发式模型。利用从电网部署的检测仪表收集到的数据进行实验验证,结合启发式算法进行检测,异常用电情况下的相对异常指数较正常情况扩大6~10倍,能够对电网的异常电量使用现象有较好的识别与检测能力,验证了所提出方法的有效性。 Nowadays,with the rapid development of social economy,the scale of power grid is increasing,the capacity of power grid is increasing,and the problem of power loss is becoming more and more serious.In order to make rational and efficient use of power,the research on abnormal power consumption is very important.Aiming at the problem of abnormal power consumption,this paper preprocesses the power consumption data of a regional power grid logically,and uses heuristic algorithm to build two targeted heuristic models.The data collected from the detection instruments deployed in the power grid are used for experimental verification.The relative anomaly index in the case of abnormal power consumption is6~10 times larger than that in the normal case.Combined with the heuristic algorithm,it can better identify and detect the abnormal power consumption phenomenon of the power grid,and verify the effectiveness of the proposed method.
作者 庄琛 马赟婷 钟震远 陈鑫 ZHUANG Chen;MAYun-ting;ZHONG Zhen-yuan;CHEN Xin(State Grid Zhejiang Marketing Service Center,Hangzhou 311100,China;Beijing China-Power Information Technology Co.Ltd.,Beijing 100089,China)
出处 《光学与光电技术》 2022年第6期133-138,共6页 Optics & Optoelectronic Technology
基金 国网浙江省电力有限公司营销数字化项目资助(6511YF21001M)
关键词 启发式算法 聚类分析 用电量 智能检测 异常识别 heuristic algorithm cluster analysis power consumption intelligent detection anomaly recognition
  • 相关文献

参考文献14

二级参考文献150

共引文献756

同被引文献7

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部