摘要
为了研制适用于环保型1 100 kV气体绝缘输电线路(gas-insulated transmission line, GIL)中的三支柱绝缘子,针对环保型气体C4F7N/CO2与传统SF6气体在绝缘强度及散热能力等方面的不同,以现有的特高压三支柱绝缘子结构为基础,建立了完善的多物理场耦合仿真模型。通过磁–热–流体耦合仿真,获得了GIL中三支柱绝缘子在额定电流下的温度分布;考虑温度对环氧树脂介电常数的影响,计算获得了三支柱绝缘子的电场分布,并参考SF6下的基准值对各个关键部位的电场强度进行了校核;通过对三支柱绝缘子进行运输状态下的应力仿真,获得了整体的应力分布。计算结果表明,三支柱绝缘子整体温度分布和应力分布满足要求,且有较大裕度;而考虑温度影响后的三支柱绝缘子表面尤其绝缘子腹部是绝缘的薄弱环节,最大电场强度达12.44 kV/mm,在应用于环保型GIL时需重点关注。
In order to develop tri-post insulators for environmental-friendly 1 100 kV gas-insulated transmission line(GIL), a complete multi-physical field coupling simulation model is established based on the existing structure of tri-post insulator on UHV GIL in accordance with the difference between environmental-friendly gas and traditional SF6 gas in terms of insulation strength and heat dissipation capacity. The temperature distribution of tri-post insulators on GIL under rated current is obtained by magnetic-thermal-fluid coupling simulation. After the influence of temperature on the dielectric constant of epoxy resin is taken into account, the electric field distribution of tri-post insulator is calculated, and the electric field intensity of each key part is checked by referring to the reference value under SF6. The stress distribution of the tri-post insulator is obtained by simulating the stress of the tri-post insulator under transportation. The calculated results show that the overall temperature and stress distribution of the tri-post insulator meet the requirements and have an enough margin, while the surface of the tri-post insulator, especially the abdomen of the insulator, is the weak link of the insulation considering the temperature, and the maximum electric field strength reaches 12.44 kV/mm, which should be paid more attention to when it is applied on environmental-friendly GIL.
作者
高璐
贾云飞
汲胜昌
成妍妍
李心一
李志兵
GAO Lu;JIA Yunfei;JI Shengchang;CHENG Yanyan;LI Xinyi;LI Zhibing(State Key Laboratory of Electrical Insulation and Power Equipment,Xi’an Jiaotong University,Xi’an 710049,China;Xi’an Xidian Switch Electric Co.,Ltd.,Xi’an 710077,China;China Electric Power Research Institute,Beijing 100192,China)
出处
《高电压技术》
EI
CAS
CSCD
北大核心
2020年第3期987-996,共10页
High Voltage Engineering
基金
国家重点研发计划(2017YFB0902500)
国家电网公司总部科技项目(环保型管道输电关键技术).