期刊文献+

The classification of intracranial aneurysm neck: a single center research experience

原文传递
导出
摘要 There is associating with incidence of unfavorable outcomes compared to microsurgical clippings. We are in order to investigate the outcomes of microsurgical clipping for intracranial aneurysms and determine the ideal clipping methods for different aneurysm subtypes. Method: Retrospectively analyzed the clinical characteristics and follow-up data (completely recorded) of 123 patients with 128 aneurysms were treated. 20 cases were treated as control group from October 2013 to December 2013. Since January 2014, aneurysms were classified base on the 20 cases of aneurysm imaging data. 103 patients were treated as experimental group, the classification of aneurysms previously proposed was used to estimate the way of surgery, and the guiding value of the genotype was verified according to the intraoperative findings. The proposed aneurysm classification is based on the virtual surface of the aneurysm and the parent artery, the aneurysm neck was classified as follows: subtype I, the curved surface of the neck is a single curved surface;subtype II, the neck is hyperboloid;subtype III, neck is a three-curved surface. Aneurysms were divided into further subtypes according to the ratio of the width of the aneurysm neck surface and the length of the artery circumference: subtype A, the ratio of the aneurysm neck surface to the parent artery was not more than 0.5;subtype B, more than 0.5. There are some clamping methods include simple, sliding, interlocking and hybrid. Results: In the control group, patients did not undergo a suitable clipping scheme without classification of aneurysm neck (unclassed clipping). While causing the occurrence of occlusion adverse events, including neck residual, Tumor artery stenosis, electrophysiological changes, the lack of blood supply and so on. The experimental[page1image12073600]group was analyzed by using a predetermined clipping scheme (classed clipping), and the use of aneurysms clamps was approximately the same as expected. Compared the preoperative assessment with the actual situation, the consistency of the control group was 50% and the experimental group was 96%. Adverse events of classed clipping is 2%, another is 60%. There is a significant difference between the two groups (P < 0.05).Classed clipping of subject IA and IB are simple (mean 1.2 and 1.3 clips);classed clipping of subject IIA is simple and interlocking(mean 1.2 clips);classed clipping of subject IIB is sliding and hybrid(mean 2.05 clips);classed clipping of subject IIIA and IIIB are hybrid(mean 2.3 clips). Conclusion: There is a higher consistency in surgery through the above classification of preoperative assessment of clipping. There was no adverse event of intracranial aneurysm clipping in the clipping mode selected by the above classification, and satisfactory surgical clipping rate was achieved and no recurrence was found.
出处 《Chinese Neurosurgical Journal》 CSCD 2019年第3期129-136,共8页 中华神经外科杂志(英文)
  • 相关文献

参考文献1

二级参考文献160

  • 1Mizushima N, Klionsky DJ. Protein turnover via autophagy: implications for metabolism. Annu Rev Nutr 2007; 27: 19-40.
  • 2Mari M, Tooze SA, Reggiori F. The puzzling origin of the autophagosomal membrane. F1000 Biol Rep 2011; 3: 25.
  • 3Mizushima N, Yoshimori T, Ohsumi Y. The role of Atg proteins in autophagosome formation. Annu Rev Cell Dev Biol 2011; 27:107-132.
  • 4Hara T, Takamura A, Kishi C, et al. FIP200, a ULK-interacting protein, is required for autophagosome formation in mammalian cells. J Cell Biol 2008; 181:497-510.
  • 5Chan EY, Longatti A, McKnight NC, Tooze SA. Kinase-inactivated ULK proteins inhibit autophagy via their conserved C-terminal domains using an Atg13-independent mechanism. Mol Cell Biol 2009; 29: 157 -171.
  • 6Ganley IG, Lam du H, Wang J, Ding X, Chen S, Jiang X. ULK1.ATG 13.FIP200 complex mediates mTOR signaling and is essential for autophagy. J Biol Chem 2009; 284:12297- 12305.
  • 7Hosokawa N, Hara T, Kaizuka T, et al. Nutrient-dependent mTORCI association with the ULKI-Atg13-FIP200 complex required for autophagy. Mol Biol Cell 2009; 20:1981-1991.
  • 8Jung CH, Jun CB, Ro SH, et al. ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery. Mol Biol Cell 2009; 20: 1992-2003.
  • 9Hosokawa N, Sasaki T, Iemura S, Natsume T, Hara T, Mizushima N. AtglO1, a novel mammalian autophagy protein interacting with Atg13. Autophagy 2009; 5:973-979.
  • 10Herman PK, Emr SD. Characterization ofVPS34, a gene required for vacuolar protein sorting and vacuole segregation in Saccharomyces cerevisiae. Mol Cell Biol 1990; 10:6742-6754.

共引文献70

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部