期刊文献+

配电网数据质量提升与数据修复系统开发研究 被引量:12

Development of Data Quality Improvement and Data Recovery System in Distribution Network
下载PDF
导出
摘要 针对配电网数据质量提升与数据修复系统存在的修复后数据与原数据相差较大、无法保证数据的准确性和完整性问题,提出基于RDIR算法的配电网数据质量提升与数据修复系统开发方法,通过对系统设计需求进行分析,确定系统的模块,为实现系统模块,设计由存储服务器、管理服务器以及Moss代理服务中心组成的系统,为保证系统对数据修复的效果,引入RDIR算法,对配电网数据,通过计算操作与数据对象之间的偏序关系,对需要修复的数据,利用已知的恶意事务位置以及执行序列,对改进的RDIR算法进行构建,从而实现数据修复系统的开发,提高配电网数据质量.实验结果表明,所提方法设计的系统能够降低数据中的噪声,且修复后数据与原数据相差较小,在保证数据的完整性的同时保证数据的可靠性. In view of the large difference between the data quality improvement and the original data of the distribution network,the accuracy and integrity of the data can not be guaranteed.The method of data quality improvement and data repair system development based on RDIR algorithm is proposed,and the system design requirement is analyzed and the system is determined.In order to realize the system module,the module is designed by the storage server,the management server and the Moss agent service center.In order to ensure the effect of the system to the data repair,the RDIR algorithm is introduced,the data of the distribution network and the partial order relation between the operation and the data object are calculated,and the data needed to be restored is used.In order to realize the development of the data repair system and improve the data quality of the distribution network,the improved RDIR algorithm is constructed by the known location of malicious transactions and the execution sequence.The experimental results show that the proposed system can reduce the noise in the data,and the difference between the reconstructed data and the original data is small.It ensures the integrity of the data and ensures the reliability of the data,and provides a theoretical basis for the further research and development of the subject.
作者 王飞 辛海松 胡丽娟 陈佳仪 WANG Fei;XIN Haisong;HU Lijuan;CHEN Jiayi(National Network Rui ring Power Technology(Beijing)Co.,Ltd.,Beijing 100053,China;China Electric Science Research InstituteCo.,Ltd.,Beijing 1001923,China;ShandongUniversity atWeihai,Weihai 264209,Shandong,China)
出处 《电网与清洁能源》 2019年第3期58-61,67,共5页 Power System and Clean Energy
基金 国家电网公司科技项目(EPRIPDKJ[2014]3763号)~~
关键词 配电网 质量提升 数据修复 系统开发 distribution network quality improvement data restoration system development
  • 相关文献

参考文献12

二级参考文献108

  • 1金连,王宏志,黄沈滨,高宏.基于Map-Reduce的大数据缺失值填充算法[J].计算机研究与发展,2013,50(S1):312-321. 被引量:18
  • 2于盛楠,杨以涵,鲍海.基于C型行波法的配电网故障定位的实用研究[J].继电器,2007,35(10):1-4. 被引量:42
  • 3朱伟兴,李丽,庞敏.基于神经网络的数据融合在废气测量中的应用[J].中国安全科学学报,2007,17(6):162-165. 被引量:2
  • 4Sheng Yonghong,Wang Dongsheng,He Jinyang,et al.THCDP:An efficient block level continuous data protection system[C]//Proceedings of the 3th International Conference on Networking,Architecture,and Storage,2009.
  • 5Sheng Yonghong,Xu Dan,Wang Dongsheng.A High effective indexing and retrieval method providing block-level timely recovery to any poing-in-time[C]//Proceeding in the 5th IEEE International Conference on Networking,Architecture,and Storage,2010.
  • 6Jake Wires,Michael J Feeley.Secure file system versioning at the block level[C]//Proceedings of the 2nd ACM SIGOPS/EuroSys European Conference on Computer Systems,2007:203-215.
  • 7JI S,Shin D.Locality and duplication-aware collection for flash memory based virtual memory systems[C]//10th IEEE International Conference on Computer and Information Technology,2010:1764-1771.
  • 8Huang Ping,Zhou Ke,Wang Hua,et al.BVSSD:Build built-in versioning flash-based solid state drives[C]//Proceeding SYSTOR Proceedings of the 5th Annual International Systems and Storage Conference,2012.
  • 9Heber A J,Ni J Q,Lim T T,et al.Quality assured measurements of animal building emissions:Gas concentrations[J].Journal of the Air and Waste Management Association,2006,56(10):1472-1483.
  • 10Bottcher R W,Keener K M,Munilla R D,et al.Dust and odor emission from tunnel ventilated swine buildings in North Carolina and comparison of different odor evaluation methods[J].Applied Engineering in Agriculture,2004,20(3):343-347.

共引文献68

同被引文献163

引证文献12

二级引证文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部