期刊文献+

基于多级维纳滤波器的二维测向算法及DSP实现 被引量:4

2-D Direction Finding Algorithm Based on Multi-stage Wiener Filter and DSP Implementation
下载PDF
导出
摘要 为了对辐射源目标进行精确定位,需要对来波信号进行二维到达角估计。将一维MUSIC算法推广到空间阵列可以对辐射源进行二维高精度测向,但由于其需要估计接收数据的协方差矩阵和进行特征分解,因而计算量较大。为了降低MUSIC算法特征分解的计算量,提出一种基于多级维纳滤波器的子空间分解算法,通过多级维纳滤波器的前向递推估计信号子空间和噪声子空间,获得噪声子空间后采用MUSIC算法实现波达方向的估计,该算法不需要估计协方差矩阵和特征分解。应用于空间阵列的二维DOA估计中进行计算机仿真和DSP实现,仿真结果表明该方法有效地降低了计算量、节省了计算时间,且达到了MUSIC算法的估计性能。 In order to locate the radiant sources accurately,2-D DOA estimation of arrival signal is required.The MUSIC algorithm can be extended to estimate the 2-D DOA of radiant sources precisely based on space antenna array.The MUSIC algorithm involves the estimation of the covariance matrix and its eigendecomposition,so it has much computational complexity.To decrease the computational complexity of eigendecomposition in MUSIC algorithm,a fast subspace algorithm based on multi-stage wiener filter (MSWF)was propos...
出处 《宇航学报》 EI CAS CSCD 北大核心 2008年第1期315-319,共5页 Journal of Astronautics
关键词 二维测向 多级维纳滤波器 MUSIC算法 DSP 2-D direction finding Multi-stage wiener filter MUSIC algorithm DSP
  • 相关文献

参考文献6

  • 1[4]Goldstein J S,Reed I S,Scharf L L.A multistage representation of the Wiener filter based on orthogonal projections[J].IEEE Trans.on Information Theory,1998,44(7):2943-2959.
  • 2[5]Michael L Honig,geimin Xiao.Performance of reduced-rank lin-ear interference suppression[J].IEEE.Trans actions on Information Theory,2001,47(5):1928-1946.
  • 3[6]Dietl G,Zoltowski M D,Joham M.Recursive reduced-rank adap-tive equalization for wireless communications[J].Proc of SPIE 2001,IEEE Press,2001:16-27.
  • 4[7]Goldstein J S,Reed I S.Subspace selection for partially adaptive sensor army processing[J],IEEE Trans.Aerospace and Electronic System,1997,33(2):539-543.
  • 5[10]Ricks D,Goldstein J S.Efficient implementation of multi-stage adap-tive wiener filters[C].In Antenna Applications Symposium,Allerton Park,Illinois,IEEE Press,2000.
  • 6[11]Huang L,Wu S,Feng D,et al.Low complexity method for signal subspace fitting[J],IEE Electronics Letters,2004,40(14):847-848.

同被引文献29

  • 1丁前军,王永良,张永顺.自适应阵列中多级维纳滤波器的有效实现算法[J].电子与信息学报,2006,28(5):936-940. 被引量:15
  • 2石宇,王树勋,黄志强.基于多级维纳滤波器的信源参数估计[J].吉林大学学报(工学版),2006,36(5):761-765. 被引量:1
  • 3侯建华,田金文,柳健.小波域局部维纳滤波器估计误差分析及图像去噪[J].光子学报,2007,36(1):188-191. 被引量:15
  • 4Schmidi R O.Multiple emitter location and signal parameter estimation[J].IEEE Trans.on Advanced Packaging,1986,34(3):243-258.
  • 5Roy R,Kailath T.ESPRIT-estimation of signal parameters via rotational invariance techniques[J].IEEE Trans.on Acoustics,Speech,and Signal Processing,1989,37(7):984-995.
  • 6Stoica P,Nehorai A.MUSIC,maximum likelihood,and Cramer-Rao bound:further results and comparisons[J].IEEE Trans.on Acoustics,Speech,and Signal Processing,1990,38(12):2140-2150.
  • 7Stoica P,Nehorai A.MUSIC,maximum likelihood,and Cramer-Rao bound[J].IEEE Trans.on Acoustics,Speech,and Signal Processing,1988,4:2296-2305.
  • 8Rao B D,Hari K V S.Performance analysis of ESPRIT and TAM in determining the direction of arrival of plane waves in noise[J].IEEE Trans.on Acoustics,Speech,and Signal Processing,1989,40(12):1990-1995.
  • 9Goldstein J S,Reed I S,Scharf L L.A multistage representation of the Wiener filter based on orthogonal projections[J].IEEE Trans.on Information Theory,1998,44(7):2943-2959.
  • 10[6]张贤达.现代信号处理.北京:清华大学出版社,2004

引证文献4

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部