期刊文献+

网络蠕虫检测方法研究 被引量:2

Research of Internet Worm Detection Technique
下载PDF
导出
摘要 随着网络系统应用及其复杂性的增加,网络蠕虫已成为网络安全的主要威胁之一。目前的蠕虫传播速度如此之快使得单纯依靠人工手段已无法抑制蠕虫的爆发。本文首先介绍了蠕虫的相关概念,然后详细介绍了当前蠕虫检测的关键技术,最后给出了蠕虫检测技术的总结和展望。 With the explosive growth of network applications and complexity,Internet worms become a major threat to the network security. Modern worms can spread so quickly,and so widely,that no human-mediated can hope to contain the outbreak. In this paper,first some concepts about worm are presented. Next we introduce the critical techniques of Internet worm detection. Finally the summery and trends of worm detection technique are given.
出处 《微计算机信息》 北大核心 2008年第6期64-65,108,共3页 Control & Automation
基金 国家自然科学基金(60403033)
关键词 网络安全 网络蠕虫 蠕虫检测 network security Internet worm worm detection
  • 相关文献

参考文献10

  • 1李硕,杜玉杰,刘庆卫.DDoS攻击防御机制综述[J].微计算机信息,2006,22(02X):28-30. 被引量:10
  • 2文伟平,卿斯汉,蒋建春,王业君.网络蠕虫研究与进展[J].软件学报,2004,15(8):1208-1219. 被引量:187
  • 3[3]LOCKWOOD JW,MOSCOLA J,KULIG M,REDDICK D,BROOKS T.Internet worm and virus protection in dynamically reconfigurable hardware[C].In Proceedings of the ACM CCS Workshop on Rapid Malcode (WORM),2003.
  • 4[4]S.SINGH,C.ESTAN,G.VARGHESE,S.SAVAGE.Automated worm fingerprinting[C].In 6th Symposium on Operating System Design and Implementation (OSDI),2004.
  • 5[5]M.O.RABIN.Fingerprinting by random polynomials[R].Center for Research in Computing Technology,Harvard University,Technical Report:15-81,1981.
  • 6[6]G.BAKOS,V.BERK.Early detection of Internet worm activity by metering ICMP destination unreachable activity[C].In Proceedings of the SPIE conference on Sensors,and Command,Control,Communications and Intelligence,April 2002.
  • 7[7]CHEUNG S,HOAGLAND J,LEVITT K,et al.The Design of GrIDS:A graph-based intrusion detection system[R].Technical Report CSE-99-2,U.C.Davis Computer Science Department,1999.
  • 8卿斯汉,文伟平,蒋建春,马恒太,刘雪飞.一种基于网状关联分析的网络蠕虫预警新方法[J].通信学报,2004,25(7):62-70. 被引量:40
  • 9[9]O.KOLESNIKOV,W.LEE.Advanced polymorphic worms:evading IDS by blending in with normal traffic[R].Technical Report,College of Computing,Georgia Institute of Technology,2004.
  • 10[10]T.TOTH,C.KRUEGEL.Accurate buffer overflow detection via abstract payload execution[C].In Proceedings of Recent Advance in Intrusion Detection (RAID),2005.

二级参考文献10

  • 1辛志东,李祥和,冉晓旻,童珉.局域网中的ARP重定向攻击及防御措施[J].微计算机信息,2005,21(08X):10-12. 被引量:17
  • 2LINGER R C, MEAD N R, LIPSON H F. Requirements definition for survivable network systems[A]. Requrements Engineering'98[C]. Colorado, 1998.14-23.
  • 3Understanding symantec's anti-virus strategy for internet gateways[EB/OL]. http://www. symantec.com/avcenter/reference/ wpnavieg.pdf. 1999.
  • 4CHEUNG S, HOAGLAND J, LEVITT K, et al. The Design of GrIDS: A Graph-Based Intrusion Detection System[R]. Technical Report CSE-99-2, U.C. Davis Computer Science Department, 1999.
  • 5Computer emergency response team(CERT)[EB/OL]. http://www.cert.org/advisories/.
  • 6STEVENS W R. TCP/IP Illustrated, Volume 1:The Protocols[M].USA: Addison Wesley, 1994.
  • 7CARLA T L, BRODLEY C E. Temporal sequence learning and data reduction for anomaly detection[A]. Proc of the 5th Conference on Computer and Communications Security[C]. New York,1999.
  • 8ROESCH M. Writing snort rules: how to write snort rules and keep your sanity[EB/OL]. http://www.snort.org.
  • 9F.Kargl,J.Maier and M.Weber.Protecting web servers from distributed denial of service attacks.In Proceedings of 10thInternational World Wide Web Conference,May 2001.
  • 10左晓栋,戴英侠.“狮子”蠕虫分析及相关讨论[J].计算机工程,2002,28(1):16-17. 被引量:17

共引文献220

同被引文献18

  • 1卿斯汉,文伟平,蒋建春,马恒太,刘雪飞.一种基于网状关联分析的网络蠕虫预警新方法[J].通信学报,2004,25(7):62-70. 被引量:40
  • 2文伟平,卿斯汉,蒋建春,王业君.网络蠕虫研究与进展[J].软件学报,2004,15(8):1208-1219. 被引量:187
  • 3贾学东,陈喆,张晓艳,孟健.新型网络蠕虫特征分析及防御策略[J].信息工程大学学报,2004,5(3):42-45. 被引量:6
  • 4翟光群,张玉凤.网络蠕虫病毒分析与防范研究[J].河南科学,2005,23(6):935-937. 被引量:8
  • 5李和平,胡占义,吴毅红,吴福朝.基于半监督学习的行为建模与异常检测[J].软件学报,2007,18(3):527-537. 被引量:30
  • 6Barford P, Kline J, Plonka D. A signal analysis of network traf- fic anomalies [ C ]//Proceedings of ACM SIGCOMM Internet Measurement Workshop. [ s. l. ] : [ s. n. ] ,2002:71-82.
  • 7Kim S, Reddy A, Vannucci M. Detecting traffic anomalies through aggregate analysis of packet header data[ C]//Proc of Networking 2004 ( LNCS 3042 ). Berlin: Springer Verlag, 2004 : 1047-1059.
  • 8Chhabra P, John A,Saran H. PISA : antomatic extraction of traffic signatures [ C ]//Proe of Networking 2005 ( LNCS 3462 ). Berlin: Springer Verlag ,2005:730-742.
  • 9Estan C, Savage S, Varghese G. Automatically inferring pat- terns of resource consumption in network traffic [ C ]//Prec. ofACM SIC, COMM Confence. [s.l. ]:[s. n. ] ,2003.
  • 10Yasami Y, Mozaffari S P. A novel unsupervised classification approach for network anomaly detection by k-means clustering and ID3 decision tree learning method [ J ]. ACM Journal of Supercompufing ,2010,53 ( 1 ) :231-245.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部