期刊文献+

数据点列的三圆弧样条插值 被引量:1

Interpolating Datapoints with Triarc Splines
下载PDF
导出
摘要 采用NURBS表示给出了一种在平面和空间中建立三圆弧的方法.在平面上建立的三圆弧以一个控制顶点为自由参数,控制三圆弧的形状.但在空间中的三个圆弧不共面时,唯一确定一个三圆弧,不具有自由参数.所构造的三圆弧样条曲线可以在插值点处按切向和曲率插值.最后给出了数值例子.三圆弧样条曲线适合于在数控加工等方面应用. Expressed by NURBS,a method for building plane and space triarc is presented.On the plane a triarc builded has one free parameter by one control point,controling the shape of the triarc.But in the space,if the three arcs is not on the same plane,the triarc is unique,doesn't have free parameter.The triarc splines can interpolate,match tangents and curvatures at the interpolation points.In the end,the numeric examples are given.The triarc splines are useful in the application of CNC and so on.
作者 林杰 潘日晶
出处 《福建师范大学学报(自然科学版)》 CAS CSCD 北大核心 2007年第2期20-24,共5页 Journal of Fujian Normal University:Natural Science Edition
基金 福建省教育厅基金资助(JA05207) 福建省自然科学基金资助项目(2006J0022)
关键词 NURBS曲线 三圆弧 插值 NURBS curve triarc interpolation
  • 相关文献

参考文献8

  • 1[1]Bolton K M.Biarc curves[J].Computer Aided Design,1975,7(2):89-92.
  • 2张三元,伍家凤,梁友栋.3D数据点列的双圆弧样条插值[J].浙江大学学报(理学版),2000,27(5):540-543. 被引量:4
  • 3[4]Piegl Tiller.Biarc approximation of NURBS curves[J].Computer Aided Design,2002,34(11):807-814.
  • 4[5]Park H.Error-bounded biarc approximatin of plannar curves[J].Computer Aided Design,2004,36(12):1241-1251.
  • 5[6]Piegl Tiller.Data approximation using biarcs[J].Engineering with computers,2002,18(1):59-65.
  • 6[7]Yong J H,Hu S M,Sun J G.Bisection algorithm for approximating quadratic Bezier curves by G1 arc splines[J].Computer Aided Design,2000,32(4):253-260.
  • 7[8]Tseng Y J,Chen Y D.Three dimensional biarc approximation of freeform surfaces for machining tool path generation[J].Int J Prod Res,2000,38(4):739-763.
  • 8[9]Meek D S,Walton D J.Planar osculating arc splines[J].Computer Aided Geometric Design,1996,13(7):653-671.

二级参考文献1

共引文献3

同被引文献8

  • 1孙家昶.样条函数与计算几何[M].北京:科学出版社,1982..
  • 2孙家昶.局部坐标下的样条函数与圆弧样条曲线[J].数学学报,1977,20(1):28-40.
  • 3董光昌,梁友栋,何援军.样条曲线拟合和双圆弧逼近[J].应用数学学报,1978,1(4):330-340.
  • 4Piegl L. Curve fitting algorithm for rough cutting[ J ]. Computer Aided l)esign1986,18 (2) :79 -82.
  • 5Hoschek J. Circular splines[ J]. Computer Aided Design, 1992,24( 11 ) :611 - 618.
  • 6Meek D S, Walton D J. Approximation of quadratic Bezier curves by arc splines [ J ]. Journal of Computational and Ap- plied Mathematics, 1994,54 (4) : 107 - 120.
  • 7Fang M, Ma W, Wang G. A generalized curve subdivision scheme of arbitrary order with a tension parameter [J]. Com- puter Aided Geometric Design, 2010,27 ( 9 ) : 720 - 733.
  • 8张三元.一种G^2连续的二次曲线样条插值方法[J].计算机辅助设计与图形学学报,2000,12(6):419-422. 被引量:12

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部