期刊文献+

两能级原子与腔场非共振耦合系统中的纠缠演化及热纠缠现象 被引量:2

Time Evolution of Atom-Cavity Entanglement and Thermal Entanglement in a Nonresonant System
下载PDF
导出
摘要 利用共生纠缠度,讨论了囚禁于单模腔场中二能级原子系统的纠缠度变化规律.在环境温度为绝对零度时,原子与腔场只在共振(Δ=0)或非共振但|Δ|=2g条件下,系统才有可能达到最大纠缠态;系统存在上限温度Tc=1.134 gk,与失谐量Δ无关.当环境温度T>Tc时,系统完全消相干;当环境温度T<Tc时,系统纠缠度随环境温度的增加而减少. Atomic-cavity entanglement in time evolution and thermal entanglement by means of concurrence are investigated for two-level atom system in cavity.The result shows that the atom-cavity maximal entangled state appears at the T=0,if it is Δ=0 or Δ=2g.There exists a critical temperature T_c=1.134gk,which is independent of a detuning frequency Δ.The thermal entanglement vanishes at the T>T_c.and it decreases with the increasing of temperature at the T<T_c.
作者 李玉良
出处 《西南师范大学学报(自然科学版)》 CAS CSCD 北大核心 2006年第6期64-67,共4页 Journal of Southwest China Normal University(Natural Science Edition)
基金 福建省教育厅科技计划资助项目(JA04259) 闽江学院资助项目
关键词 原子与腔场纠缠 失谐频率 热纠缠态 共生纠缠度 atom-cavity entanglement detuning frequency thermal entanglement concurrence
  • 相关文献

参考文献14

  • 1[1]Ekert A K.Quantum Cryptography Based on Bell's Theorem[J].Phys Rev Lett,1991,67(6):661-663.
  • 2[2]P Xue,Li C-F,Guo G-C.Efficient Quantum-Key-Distribution Scheme with Nonmaximally Entangled States[J].Phys Rev A,2001,64(3):032305-032309.
  • 3[3]Bennett C H,Brassard G,Crepeau C,et al.Teleporting an Unknown Quantum State Via dual Classical and Einstein-Podolsky-Rosen Channels[J].Phys Rev Lett,1993,70(13):1895-1899.
  • 4[4]Li W-L,Li C-F,Guo G-C.Probabilistic Teleportation and Entanglement Matching[J].Phys Rev A,2000,61(3):034301-034303.
  • 5[5]Bennett C H,Wiesner S J.Communication Via One-and Two-Particle Operators on Einstein-Podolsky-Rosen States[J].Phys Rev Lett,1992,69(20):2881-2884.
  • 6[6]Unruh W G.Mantaining Coherence in Quantum Computers[J].Phys Rev A,1995,51(2):992-997.
  • 7[7]Vedral V,Plenin M B.Quantifying Entanglement[J].Phys Rev Lett,1997,78(12):2275-2279.
  • 8[8]Knoll L.Distance Between Density Operators:Application to the Jaynes-Cummings Model[J].Phys Rev A,1995,51(2):1622-1668.
  • 9[9]Horodecki P.Separability Criterion and Inseparable Mixed States with Positive Partial Transposition[J].Phys Lett A,1997,232(5):333-339.
  • 10[10]Wootters W K.Entanglement of Formation of an Arbitrary State of Two Qubits[J].Phys Rev Lett,1998,80(10):2245-2248.

二级参考文献2

共引文献17

同被引文献28

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部