期刊文献+

农田水量平衡法和BP神经网络法预测土壤墒情的对比 被引量:8

Comparative Study on Models for Predicting Soil Moisture with Two Different Methods
下载PDF
导出
摘要 以田间实测土壤体积含水率为标准,对以Penman-Montieth公式计算蒸散量ET为主的农田水量平衡法和以气象资料与作物叶面积指数为输入向量的BP神经网络法进行了土壤含水率预测对比研究,比较分析了这二种方法的预测精度。结果表明:农田水量平衡法比BP神经网络法的预测精度高。与实测值相比,前者的平均绝对误差、平均相对误差和均方差分别为1.04、4.84和1.245,而后者分别为1.06、5.08和6.657,二者的一致性指数CI分别为0.9505和0.9459。两种方法对土壤含水率预测值与实测值的拟合关系分别为y=0.7821x+4.7127(R2=0.8390)和y=0.7302x+6.1104(R2=0.8615),表明预测值与实测值的相关关系都达到了极显著水平,均可实现精度与实用的统一。 Based on the real tested data of soil volumetric water contents,we studied the performance for predicting soil moisture with two different methods,which include water balance method with PenmanMontieth formula(named as ET method) and BP artificial neural network method with main meteorology data and LAI as input vectors(named as BP method).The results showed that the predicted performance with ET method was higher than that of BP method.Compared with real tested values,mean absolute error,relative mean abso...
出处 《石河子大学学报(自然科学版)》 CAS 2007年第6期757-761,共5页 Journal of Shihezi University(Natural Science)
基金 新疆兵团科技计划项目(2007YD24 2006YD43和2006GJS13)
关键词 土壤墒情 预测 农田水量平衡模型 BP神经网络模型 对比 soil moisture prediction farmland water balance model back-propagation neural network model comparative study
  • 相关文献

参考文献15

  • 1[1]Givi J,Prasher S O,Patel R M.Evaluation of pedotransfer functions in predicting the soil water contents at field capacity and wilting point[J].Agricultural Water Management,2004,70(2):83-96.
  • 2[2]Starks P J,Heathman G C,Ahujab L R.Use of limited soil property data and modeling to estimate root zone soil water content[J].Journal of Hydrology,2003,272:131-147.
  • 3[3]Bierkens M.Spatio-temporal modeling of the soil water balance using a stochastic model and soil profile descriptions[J].Geoderma,2001,103:27-501.
  • 4[4]Panigrahia B,Panda S N.Field test of a soil water balance simulation model[J].Agricultural Water Management,2003,58:223-240.
  • 5刘洪斌,武伟,魏朝富.基于神经网络的土壤水分预测建模研究[J].水土保持学报,2003,17(5):59-62. 被引量:17
  • 6[6]Almasri Mohammad N,Kaluarachchi Jagath J.Modular neural networks to predict the nitrate distribution in ground water using the on-ground nitrogen loading and recharge data[J].Environmental Modeling and Software,2005,20(7):851-871.
  • 7周良臣,康绍忠,贾云茂.BP神经网络方法在土壤墒情预测中的应用[J].干旱地区农业研究,2005,23(5):98-102. 被引量:24
  • 8[8]Anctil Francois,Michel Claude,Perrin Charles,et al.A soil moisture index as an auxiliary ANN input for stream flow forecasting[J].Journal of Hydrology,2004,286(1-4):155-167.
  • 9[9]Jeevananda Reddy S.A simple method of estimating the soil water balance[J].Agricultural Meteorology,1983,28:1-17.
  • 10[10]FAO-Food and Agriculture Organization.Crop Evapotranspiration Guidelines for Computing Crop Water Requirements[M].Rome:FAO-Food and Agriculture Organization Press,1998.

二级参考文献31

共引文献116

同被引文献106

引证文献8

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部