期刊文献+

超精密点对点运动3阶轨迹规划算法与实现 被引量:8

Third-order profile planning algorithm and implementation for high accuracy point-to-point motion
下载PDF
导出
摘要 分析了3阶轨迹轮廓可能存在的各种情形,在总结各种轨迹情形图形特征的基础上,建立了用来预判别以上情况的3个基准:速度-加速度准则、距离-加速度准则和距离-速度准则.依据该基准与给定系统约束,提出了一种轨迹全过程的快速预处理方法,实现了点对点运动时间优化;结合轨迹轮廓图形的对称性与面积求积分法,给出了一种简单的公式推导方法.在此基础上,给出了3阶轨迹规划的精确算法及其实现流程.实例证明了该算法的快速性、有效性、可靠性及灵活性.该算法已成功应用于超精密半导体加工装备的研发中. All available instances for third-order profile planning firstly were analyzed.To identify that,three criteria were presented relying on profile characteristics.Hereafter a fast preprocessing approach considering the profile as a whole was given based on three criteria above and system constraints.And also time-optimality of the profile was obtained.The relevant formulas were easily derived with combination geometrical symmetry of profile and area method.As a result,accurate algorithm and its implementation...
出处 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2007年第12期58-61,共4页 Journal of Huazhong University of Science and Technology(Natural Science Edition)
基金 国家自然科学基金资助项目(50245011) 国家重点基础研究发展计划资助项目(2003CB716206)
关键词 轨迹规划 点对点运动 约束基准 快速预处理 profile planning point-to-point motion limitation criteria fast preprocess
  • 相关文献

参考文献11

  • 1[1]Lewin C.Motion control gets gradually better[J].Machine Design,1994,66:90-94.
  • 2[2]Meckl P H,Seering W P.Minimizing residual vibration for point-to-point motion[J].Journal of Vibration,Acoustics,Stress,and Reliability in Design,1985,107:378-382.
  • 3[3]Meckl P H,Arestides P B,Woods M C.Optimized s-curve motion profiles for minimum residual vibration[C]∥Proceedings of the American Control Conference.Evanston:American Automatic Control Council,1998:2627-2631.
  • 4[4]Roover D,Sperling F.Point-to-point control of a high accuracy positioning mechanism[C]∥Proceedings of the American Control Conference.Evanston:American Automatic Control Council,1997:1350-1354.
  • 5[5]Dijkstra B G,Rambaratsingh N J,Scherer C,et al.Input design for optimal discrete-time point-to-point motion of an industrial XY positioning table[C]∥Proceedings of the 39th IEEE Conference on Decision and Control.Piscataway:IEEE,2000:901-906.
  • 6[6]Zhou L,Misawa E A.Vibration suppression control profile generation with both acceleration and velocity constraints[C]∥Proceedings of the American Control Conference.Piscataway:IEEE,2005:4736-4741.
  • 7周云飞,李国其,周济,周祖德.CNC曲面直接插补(SDI)算法和系统[J].华中理工大学学报,1993,21(4):7-12. 被引量:14
  • 8徐海银,陈幼平,周祖德.CNC 系统中空间抛物线的五坐标迭代插补法[J].华中理工大学学报,1998,26(4):50-52. 被引量:1
  • 9詹泳,周云飞,周济.五轴数控机床空间圆弧插补[J].华中理工大学学报,2000,28(5):4-6. 被引量:10
  • 10徐海银,李丹,李端铃,卢筑飞.旋转插补原理研究[J].华中科技大学学报(自然科学版),2006,34(6):58-59. 被引量:2

二级参考文献11

  • 1周云飞,李国其,周济,周祖德.CNC曲面直接插补(SDI)算法和系统[J].华中理工大学学报,1993,21(4):7-12. 被引量:14
  • 2Choi B K, Jerard R B, Sculptured surface machining:theory and application[M], Netherlands: Kluwer Academic, 1999.
  • 3Fleisig R V, Spence A D. A constant feed and reduced angular acceleration interpolation algorithm for multl-axis machining [J]. Computer-Aided Design,2001, 33: 1-15.
  • 4Ho M C, Hwang Y R, Hu C H, Five-axis tool orientation smoothing using quaternion interpolation algorithm[J]. International Journal of Machine Tool and Manufacture, 2003, 431 1 259-1 267.
  • 5Xu H Y, Zhou Y H, Zhang J J. Angular interpolation of bi parameter curves[J~. Computer-Aided Design, 2003, 35:1 211-1 220.
  • 6Yeh S S, Hsu P L, The speed-controlled interpolator for machining parametric curves[J]. Computer-Aided Design, 1994, 26(11): 845-849.
  • 7Shiptalni M, Koren Y, Lo C C, Realtime curve interpolators[J]. Computer-Aided Design, 1994, 28(11)832-838.
  • 8Farouki R T, Shah S. Real-time interpolators for Pythagorean-hodograph curves[J]. Computer-Aided Geometric Design, 1996, 13: 583-600.
  • 9Litivn F L. Computerized inspection of hypoid pinion face-milled tooth surfaces. Mach Tools Manuf, 1992,32(6) : 869-884
  • 10Litivn F L. Computerized generation and simulation of meshing and contact of spiral bevel gears with improved geometry. Comput. Methods Appl. Mech. Engrg.1998, 158:35-64

共引文献27

同被引文献62

引证文献8

二级引证文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部