摘要
通过随体坐标系的建立分析做定轴转动的刚柔耦合系统的变形运动,在考虑柔性梁轴向、横向变形和截面弯转的情况下,采用Green应变理论分析系统的几何非线性。然后用微元法从应力-应变的角度得出了系统的动力学方程。在考虑梁的几何非线性的同时,通过忽略其轴向变形,得出一个描述转动梁横向振动的强非线性方程。最后采用一种改进的L-P法求得了方程的一阶近似解,通过与能量法所得结果的比较表明,所得近似解有较好的精度。
With the rotating coordinate system,the dynamics of a rigid-flexible coupled system with rotating motion are analyzed.The axial and transverse deformation and the cross section rotation of the beam are taken into account.The geometric nonlinearity of the beam is discussed by Green strain formula.A set of dynamic equations is established by differential element method.Through neglecting the axial motion,a simplified model is presented and a strongly nonlinear equation is obtained.By using the improved L-P method,the first order approximate solution with fair accuracy is obtained.
出处
《噪声与振动控制》
CSCD
北大核心
2007年第4期34-37,共4页
Noise and Vibration Control
关键词
振动与波
柔性梁
强非线性
几何非线性
改进的L-P法
vibration and wave
rotating beam
strong nonlinearity
geometric nonlinearity
improved L-P method