期刊文献+

统一混沌系统同步及其保密通信 被引量:4

Synchronization of Unified Chaotic System and its Secure Communication
原文传递
导出
摘要 文中研究了混沌系统的广义同步和基于状态观测器同步。利用这两种同步方法,研究了统一混沌系统同步。研究发现:同步后的响应系统能保持混沌状态。在基于状态观测器同步的基础上,提出了全双工保密混沌通信系统,理论分析和仿真实验证明了该通信方案的可行性。 This paper studies the generalized synchronization and synchronization based on state observer of chaos. By utilizing these two synchronization methods,the synchronization of unified chaotic system is studied. The study reveals that the responsed system remains in chaos after the system is synchronization. On the basis of synchronization based on state observer,the full duplex of secure communication is proposed. The theoretical analysis and simulation proves that the communication schcme is practicable.
作者 刘洋 彭良玉
出处 《通信技术》 2007年第10期51-52,55,共3页 Communications Technology
基金 湖南省自然科学基金项目(06JJ50117)
关键词 广义同步 状态观测器 保密通信 generalized synchronization state observer secure communication
  • 相关文献

参考文献5

二级参考文献30

  • 1王兴元,刘明.用滑模控制方法实现具有扇区非线性输入的主从混沌系统同步[J].物理学报,2005,54(6):2584-2589. 被引量:36
  • 2方锦清.非线性系统中混沌控制方法、同步原理及其应用前景(二)[J].物理学进展,1996,16(2):137-202. 被引量:117
  • 3[1]Pecora L M, Caroll T L. Synchronization in Chaotic System[J]. Physical Review Letters, 1990,64:821-824.
  • 4[2]Richard Johnson C, Thorp James S. An Adaptive Cslibrsyion Algorithm for Shnchronized Chaos [J]. IEEE Signal Processing Letters, 1994, 1(12): 194 - 195.
  • 5[3]Fradkov Alexander L, Mankov A Yu. Adaptive Synchronization of Chaotic Systems Based on Speed Gradient Method and Passification[J]. IEEE Trans. on Circuits Syst.I:Fundamental Theory and Applications, 1997,44(10):905-912.
  • 6[4]Liao Teh-Lu. Adaptive Synchronization of Two Lorenz Systems[J] .Chaos, Solitons & Fractals, 1998, 9:1555-1561.
  • 7[5]Liao Teh-Lu, Lin Sheng-Hung. Adaptive Control and Synchronization of Lorenz Systems[J]. Journal of the Franklin Institute, 1999, 336:925-937.
  • 8[6]Liao Teh-Lu, Tsai Shin-Hwa. Adaptive Synchronization of Chaotic Systems and Its Application to Secure Communications[J]. Chaos, Solitons & Fractals, 2000, 11: 1387- 1396.
  • 9[7]Lian Kuang-Yow. Adaptive Synchronization Design for Chaotic Systems via a Scalar Driving Signal[J]. IEEE Trans. on Circuits Syst. I: Fundamental Theory and Applications, 2002, 49:17-27.
  • 10[8]Chen Guanrong, Tetsushi U ET. Yet Another Chaotic Attractor[J]. International Journal of Bifurcation and Chaos, 1999, 9(7): 1465- 1466.

共引文献23

同被引文献26

  • 1徐艳平,周玉洁.高级加密标准AES的高速实现[J].信息安全与通信保密,2006,28(4):81-83. 被引量:4
  • 2刘扬正,林长圣,费树岷,吴小军.Coullet系统异结构线性反馈混沌同步[J].系统工程与电子技术,2006,28(4):591-593. 被引量:10
  • 3王兴元,武相军.基于状态观测器的一类混沌系统的反同步[J].物理学报,2007,56(4):1988-1993. 被引量:14
  • 4CUOMO K M, OPPENHEIM A V. Circuit implementation of synchronized chaos with application to communications [J]. Phys Rev Lett, 1993, 71: 65-68.
  • 5MILANOVIC V, ZAGHLOUL M E. Improved masking algorithm chaotic communications systems [J]. Electronic Letters, 1996, 32(1) : 11-12.
  • 6李晓松,李清都.混沌系统与混沌电路[M].北京:科学出版社.2007.
  • 7Wegener C, Kennedy M P. RF Chaotic Colpitts Oscillator Dublin Ireland[C]// In Proceedings of an International Workshop on Nonlinear Dynamics of Electronic Systems, NOES' 95, Dublin Ireland, 1995:255-258.
  • 8Fotsin H B, Daafouz J. Adaptive Synchronization of Uncertain Chaotic Colpitts Oscillators Based on Parameter Identification[J].Phys Lett A, 2005(339):3-5,304-315.
  • 9Li G H. Synchronization and Anti-synchronization of Colpitts Oscillators Using Active Control[J].Chaos Soliton Fract, 2005(26):87-93.
  • 10Tamasevicius A, Bumeliene S, Lindberg E. Improved Chaotic Colpitts Oscillator for Ultrahigh Frequencies[J].Electron Lett, 2004,40(25):1569-1570.

引证文献4

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部