期刊文献+

基于BP神经网络的振动筒压力传感器的温度补偿 被引量:5

A Method to Improve Static State Output Characteristic of Vibration-Type Sensor Based on BP Neural Network
下载PDF
导出
摘要 介于振动筒压力传感器在航空领域有广泛的应用,本文以某基于振动筒压力传感器的大气数据系统为基础,研究了振动筒压力传感器的输入-输出特性,并对影响其输出特性的主要因素进行了深入分析,得到了振动筒压力传感器的温度特性曲线.提出了一例利用BP人工神经网络对振动筒压力传感器静态输出特性进行修正的新方法.计算机仿真和试验结果表明:该方法能够有效改善传感器的输出特性,并且速度快、精度高、鲁棒性强,便于用硬件实现,具有较高的推广应用价值. As vibration-type sensors are widely used in navigation instruments, based on the theory of vibration-type sensor.The input/output of vibration-type sensors is deeply studied. Through analysis of the experimental data,the temperature characteristic curve is obtained. And a new method based on BP neural network’s non-linear function approach to improve the static state output characteristic of vibration-type sensor is presented. The simulation result demonstrates that the vibration-type sensor’s static state output characteristic has improved effectively. Besides that,simple hardware,faster speed,high accuracy and better robustness are offered.
出处 《传感技术学报》 CAS CSCD 北大核心 2007年第10期2213-2217,共5页 Chinese Journal of Sensors and Actuators
基金 教育部科学技术研究重点项目资助(206077) 江西省教育厅基金项目资助(2006191)
关键词 BP神经网络 振简式传感器 大气数据系统 静态输出特性 鲁棒性 BP neural network vibration-type sensor air data system(ADS) static state output characteristic rebustness
  • 相关文献

参考文献7

二级参考文献17

  • 1蔡煜东,姚林声.传感器非线性校正的人工神经网络方法[J].仪器仪表学报,1994,15(3):299-302. 被引量:21
  • 2王继成.一个基于神经树结构的模式分类系统[J].电子学报,1997,25(7):107-110. 被引量:1
  • 3刘均华.智能传感器系统[M].西安电子科技出版社,2002..
  • 4[日]Ken-yahashimoto 王景山译.声表面波器件的模拟与仿真[M].国防工业出版社,2002..
  • 5[1]Engozinger S, Tomsen E. An accelerated learning algorithm for multiplayer perceptions Optimization layer by layer. IEEE Trans on Neural Networks, 1995; 6( 1 ): 31 ~ 42
  • 6[2]de Ghellinck G , Vial J P. A polynomial Newton method for linear programming. Algorithmica, 1986; 1 (3): 425 ~ 453
  • 7[3]Karayiannis N J, Venetsanopoulos A N. Fast learning algorithm for neural networks. IEEE Trans. Cas-1, 1992;39(7):453~474
  • 8[4]Rumelhart D E, Mocelelland J L and the PDP Research Group.Parallel Distributed Processing. Cambridge, MIT Press, 1988
  • 9[1]Schurmann,J.Pattern Classification,A Unified Way of Statistical and Neural Approaches [M].New York:Wiley,1996.
  • 10[2]Polycarpon M M Ioannou P A.Learning and convergence analysis of neural-type structured networks [J].IEEE Trans.Neural Networks,1992,NN-3(1):39-50.

共引文献80

同被引文献39

引证文献5

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部