期刊文献+

含两个分量的四边形单元面积坐标理论 被引量:7

A TWO-COMPONENT AREA COORDINATE METHOD FOR QUADRILATERAL ELEMENTS
下载PDF
导出
摘要 为了便于构造抗畸变的四边形单元,建立了一套新的四边形单元面积坐标理论(QAC-2),并给出了相关的积分和微分公式。该坐标系作为自然坐标,具有明确的物理意义,且只含有两个相互独立的坐标分量,因此易于实现与直角坐标和等参坐标的沟通,便于理解和应用;两个坐标分量与直角坐标之间满足线性变换,在构造单元时易于选择完备的多项式序列,且多项式的完备次数不会随着网格的畸变而下降,因此可以保证单元的精度和抗畸变性能。 In order to construct quadrilateral elements insensitive to mesh distortion,a new kind of quadrilateral area coordinate method,denoted as QAC-2,has been successfully developed. And related differential and integral formulae are also presented. As a natural coordinate system,QAC-2 has explicit physical meanings. It includes only two independent components,Z1 and Z2,which make it easier to communicate with Cartesian coordinates and isoparametric coordinates. Furthermore,since Z1 and Z2 are linear functions of Cartesian coordinates x and y,it is convenient to establish a polynomial with high order completeness in Cartesian coordinates by using Z1 and Z2,and this polynomial will keep its completeness order invariable for mesh distortion cases. QAC-2 is a simple and novel tool for developing more accurate and robust quadrilateral element models.
出处 《工程力学》 EI CSCD 北大核心 2007年第z1期32-35,共4页 Engineering Mechanics
基金 国家自然科学基金资助项目(10502028) 高等学校全国优秀博士论文作者专项基金资助项目(200242)
关键词 有限元 四边形元 面积坐标 网格畸变 微分和积分公式 finite element quadrilateral element area coordinate mesh distortion differential and integral formulae
  • 相关文献

参考文献5

  • 1[1]Taig I C.Structural analysis by the matrix displacement method[R].Engl.Electric Aviation Report,1961:S017.
  • 2[2]Irons B M.Engineering application of numerical integration in stiffness method[J].J.AIAA,1966,14:2035~2037.
  • 3[3]Lee N S,Bathe K J.Effects of element distortion on the performance of isoparametric elements[J].International Journal for Numerical Methods in Engineering 1993,36:3553~3576.
  • 4[6]Chen X M,Cen S,Long Y Q,Yao Z H.Membrane elements insensitive to distortion using the quadrilateral area coordinate method[J].Computers & Structures,2004,82(1):35~54.
  • 5[10]Cardoso R P R,Yoon J W,Valente R A F.A new approach to reduce membrane and transverse shear locking for one-point quadrature shell elements:linear formulation[J].International Journal for Numerical Methods in Engineering,2006,66(2):214~249.

同被引文献76

  • 1吴长春,焦兆平.用于几何非线性分析的内参型非协调元法[J].力学学报,1993,25(4):505-513. 被引量:4
  • 2陈晓明,岑松,龙驭球.采用面积坐标和基于假设转角的薄板元[J].工程力学,2005,22(4):1-5. 被引量:8
  • 3钟万勰,纪峥.理性有限元[J].计算结构力学及其应用,1996,13(1):1-8. 被引量:48
  • 4陈晓明,岑松,宋德坡.采用面积坐标的抗畸变四边形曲边膜元[J].清华大学学报(自然科学版),2007,47(2):248-255. 被引量:4
  • 5龙驭球 支秉琛 等.分区混合有限元法计算应力强度因子[J].力学学报,1982,(4):341-353.
  • 6MacNeal R H, Harder R L. A proposed standard set of problems to test finite element accuracy [J]. Finite Elem Anal Des, 1985(1): 3-20.
  • 7LONG Yuqiu, LI Juxuan, LONG Zhifei, et al. Area coordinates used in quadrilateral elements [J]. Commun Numer Meth Eng, 1999, 15(8) : 533 - 545.
  • 8LONG Zhifei, LI Juxuan, CEN Song, et al. Some basic formulae for area coordinates used in quadrilateral elements [J]. Commun Numer Meth Eng, 1999, 15(12): 841 -852.
  • 9Wilson E L, Taylor R L, Doherty W P, et al. Incompatible displacement models, numerical and computer methods in structural mechanics[C]// Fenves S J. Academic Press, New York, 1973, 43 -57.
  • 10Taylor R L, Beresford P J, Wilson E L. A non-conforming element for stress analysis[J]. Int J Num Meth Engng, 1976(10) : 1211 - 1219.

引证文献7

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部