摘要
本文研究以两结点组X1={1k+1}nk=1与X2={12n}nk=1为插值结点的rn(X;x)对|x|的敛散性.并得出结论:rn(X;x)在区间[-1,1]一致收敛于|x|的充分必要条件是limn→∞S(n)1=∞.
In this paper,we investigate convergence or divergence of r_n(X;x) to |x| in ,where the rational function r_n(X;x) corresponding to the set X_1={1[]k+1}~n_(k=1) and X_2{1[]2~n}~n_(k=1),and concludes the condition(lim)[]n→∞S^((n))_1=∞ is necessary and sufficient for uniform convergence of r_n(X;x) to |x| on .
出处
《山西师范大学学报(自然科学版)》
2006年第2期10-13,共4页
Journal of Shanxi Normal University(Natural Science Edition)