期刊文献+

一类无标度网络的特征分析 被引量:5

Characters Analysis for a Class of Scale-Free Networks
下载PDF
导出
摘要 通过对BA模型与其它无标度模型的分析,利用平均场理论,得出在保证增长和优先连接条件下无标度模型的γ值的大小成因。发现了此类无标度网络都具有的标度共同点:新增节点具有固定度时系统的akibt决定了γ的大小,即γ=ba+1,从而可以简化分析过程,并且更有利于构造模型,扩展研究思路。通过一个简单的无标度模型来证实结论。 In this paper,BA model and other scale-free models are investigated.By applying mean-field theory,the cause of formation for the value of γ is found,with the assumption growth and preferential attachment.These models all have the characteristic,the value of γ is determined by the system's ak_ibt,γ=ba+1 in the case of adding a new vertice with a fixed degree.Thus other models can be constructed easily.The process of analysis is simplified and this may enlarge our sights.By introducing a simple scale-free model,the conclusion is proved to be right.
机构地区 江苏大学理学院
出处 《复杂系统与复杂性科学》 EI CSCD 2005年第3期67-71,共5页 Complex Systems and Complexity Science
基金 国家博士后基金(20033498) 江苏省教育厅基金(03KJD110070 03SJB630002)
关键词 幂律分布 复杂网络 无标度 distribution of power-law complex networks scale-free
  • 相关文献

参考文献9

  • 1[1]Watts D J,Strogatz S H.Collective dynamics of‘small-world’ networks[J].Nature,1998,393(6684):440-442.
  • 2[2]Barabási A L,Albert R.Emergence of scaling in random networks[J].Science,1999,286:509-512.
  • 3[3]Barabási A L,Albert R,Jeong H.Mean-field theory for scale-free random networks[J].Physica A,1999,272:173-187.
  • 4[4]Dorogovtsev S N,Mendes J F F,Samukhin A N.Structure of growing networks with preferential linking[J].Physical Review Letters,2000,85(21):4 633-4 636.
  • 5[5]Liu Zonghua,Lai Ying-Cheng,Nong Ye.Connectivity distribution and attack tolerance of general networks with both preferential and random attachments[J].Physics Letters A,2002,303(5-6):337-344.
  • 6[6]Chen Qinghua,Shi Dinghua.The modeling of scale-free networks[J].Physica A,2004,335:240-248.
  • 7[7]Dorogovtsev S N,Mendes J F F.Effect of the accelerating growth of communications networks on their structure[J].Phys Rev E,2001,63(2):025101(R).
  • 8章忠志,荣莉莉,周涛.一类无标度合作网络的演化模型[J].系统工程理论与实践,2005,25(11):55-60. 被引量:18
  • 9[9]Dorogovtsev S N,Mendes J F F.Evolution of networks[J].Advances in Physics,2002,51(4):1 079-1 187.

二级参考文献17

  • 1周涛,柏文洁,汪秉宏,刘之景,严钢.复杂网络研究概述[J].物理,2005,34(1):31-36. 被引量:239
  • 2章忠志,荣莉莉.BA网络的一个等价演化模型[J].系统工程,2005,23(2):1-5. 被引量:16
  • 3Albert R, Barabási A L. Statistical mechanics of complex networks[J]. Reviews of Modern Physics, 2002,74( 1 ): 47 - 97.
  • 4Newman M E J. The structure and function of complex networks[J]. SIAM Review, 2003, 45(2): 167 - 256.
  • 5Watts D J, Strogatz S H. Collective dynamics of 'small-world' networks[J]. Nature, 1998, 393: 440-442.
  • 6Barabási A L, Albert R. Emergence of scaling in random networks[J]. Science, 1999, 286:509 - 512.
  • 7Barabási A L, Albert R, Jeong H. Mean-field theory for scale-free random networks[J]. Physica A,1999, 272:173 - 187.
  • 8Amaral L A N, Scala A, Barthélemy M,et al. Classes of small-world networks[J]. PNAS, 2000,97(21): 11149 - 11152.
  • 9Newman M E J. Scientific collaboration networks. Ⅰ . Network construction and fundamental results[ J]. Physical Review E, 2001,64(1): 016131.
  • 10Newman M E J. Scientific collaboration networks. Ⅱ . Shortest paths, weighted networks, and centrality[J]. Physical Review E,2001,64(1): 016132.

共引文献17

同被引文献25

引证文献5

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部