期刊文献+

一种图像分层表述的快速算法 被引量:1

A FAST ALGORITHM OF IMAGE LAYER-PRESENTATION
下载PDF
导出
摘要 提出一种新的灰度图像分层表述算法。该算法的核心是基于一系列具有高度规律性的灰度函数gn(x,y)来逼近不规则的原图像灰度函数f(x,y)。本算法具有快速收敛性,是一个良好的逼近器。由于gn具有高度规律性,致使用较少的存储空间就可实现对它的存储。这一算法为生物图像的数据处理和重构提供一条新的途径。 A new algorithm of image Layer-presentation was proposed. The key concept of the algorithm was in that the image grayscale function f(x,y), which was comparatively irregular, was approximated by a series of high-regular grayscale functions gn(x,y). The algorithm had the feature of fast convergence and so it was a good approximator. Due to its high-regularity, gn might be stored in a quite small memory space. Thus, the algorithm gives a new way for data processing and reconstruction of biological images.
出处 《生物物理学报》 CAS CSCD 北大核心 2008年第1期72-76,共5页 Acta Biophysica Sinica
基金 国家自然科学基金项目(39970217 30600121)~~
关键词 图像分层表述 图像压缩 快速收敛性 Layer-presentation of image Image compression Fast convergence
  • 相关文献

参考文献9

  • 1[1]Chen SE.Quick Time--An image-based approach to virtual environment navigation.In:Proceedings of the ACM SIG-GRAPH Conference on Computer Graphics,Los Angeles,CA,USA,1995.29~38
  • 2[2]Kadir T,Brady M.Saliency,scale and image description.International Journal of Computer Vision,2001,45(2):83~105
  • 3[3]Grevera GJ,Udupa JK.Shaped-based interpolation of multidi-mensional grey-level image.IEEE Tram Med Imaging,1996,15(6):881~892
  • 4[4]Malladi R,Sethian JA,Vemuri BC.Shape modeling with front propagation:a level set approach.IEEE Transactione on Pattern Analysis and Machine Intelligence,1995,17(2):156~175
  • 5[5]Braccini C.Image analysis and processing.Berlin:Springer-Verlag,1995.483~487
  • 6[6]Cai N,Hu KH,Xiong HT,Li SY,Su WF,Zhu FS.Image segmentation of G bands of Triticum monococcum chromo-somes based on the model-based neural network.Pattern Recognition Letters,2004,25(3):319~329
  • 7蔡念,胡匡祜,李防震,苏万芳.基于小波神经网络的图像去噪算法[J].生物物理学报,2005,21(1):78-82. 被引量:8
  • 8[8]Castleman KR(著),朱志刚,林学闫,石定机(译).数字图像处理.北京:电子工业出版社,1998
  • 9[9]Tewfik A,Singha D,Jorgensen P.On the optimal choices of a wavelet for signal representation.IEEE Tram Information Theory,1992,38:747~765

二级参考文献10

  • 1Kuan DT, Sawchuk AA, Strand TC, Chavel P. Adaptive noise smoothing filter for images with signal-dependent noise. IEEE Trans Pattern Anal Machine Intell, 1985,7:165~177.
  • 2Justusson BI. Median filtering: statistical properties. In: Huang TS, ed. Two-dimensionl digital Signal Processing Ⅱ. New York: Spinger-Verlag, 1981.
  • 3Achim A, Bezerianos A, Tsakalides P. Novel Bayesian multiscale method for speckle removal in medical ultrasound images. IEEE Trans on Medical Imaging, 2001,20:772~783.
  • 4Portilla J, Strela V, Wainwright M J, Simoncelli EP. Image denoising using scale mixtures of gaussians in the wavelet domain. IEEE Trans Image Processing, 2003,12(3):1338~1351.
  • 5Kong H, Guan L. A. neural network adaptive filter for the removal of impulse noise in digital images. Neural Networks Letter, 1996,9(3):373~378.
  • 6Zhang Q, Benveniste A. Wavelet networks. IEEE Trans Neural Networks, 1992,3(6):889~898.
  • 7Szu HH, Telfer B. Neural network adaptive wavelets for signal representation and classification. Optical Engineeing,1992,31(9):1907~1916.
  • 8Pati YC, Krishnaprasad PS. Analysis and synthesis of feedforward neural networks using discrete affine wavelet transformations. IEEE Trans Neural Networks, 1992,4:73~85.
  • 9Tukey JW. Exploratory data analysis. Reading, MA: AddisonWesley, 1971.
  • 10Fletcher R. Practical methods of optimization. New York:John Wiley and Sons, 1987.

共引文献7

同被引文献10

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部