期刊文献+

Equal Width波方程的精确行波解与波的动态模拟(英文) 被引量:4

Exact traveling wave solutions and dynamic simulations of wave for the Equal Width wave equation
下载PDF
导出
摘要 继Abdulkadir Dogan用Galar方法求解Equal Width波方程得到一些数值解之后,我们利用动力系统分支理论再次求解了这个方程。确定了存在光滑的孤立波和周期波解的参数条件。给出了一些精确的解析行波解。同时,给出了这些行波解的动态模拟图。 After Abdulkadir Dogan solved the nonlinear Equal Width wave equation by using Galerkin's method to obtain some numerical solutions,we solve this equation completely by using the bifurcation theory of dynamical systems.The parametric conditions of the existence of smooth solitary wave and periodic wave solutions are determined.All possible exact traveling wave solutions are obtained.Meanwhile,the simulation graphs of wave motion of these waves are given.
出处 《西南民族大学学报(自然科学版)》 CAS 2006年第5期851-857,共7页 Journal of Southwest Minzu University(Natural Science Edition)
基金 国家自然科学基金(10571062) 红河学院自然科学基金(XJ1Z0502)
关键词 孤立波 周期波 波的动态模拟 Equal Width方程 solitary wave solution periodic wave solution simulation of wave motion Equal Width wave equation
  • 相关文献

参考文献6

  • 1[1]ABDULKADIR DOGAN.Application of Galerkin's method to equal width wave equation[J].Appl.Math.Comput.2005,160:65-76.
  • 2[2]MORRISON P J,MEISS J D,GAREY J R.Scattering RLW solitary waves[J].Physica D,1984,11:324-336.
  • 3[3]GARDNER L R T,GARDNER G A.Solitary waves of the regularized long wave equation[J].Journ.,Comput.Phys.1990,91:441-459.
  • 4[4]CHOW S N,HALE J K.Method of bifurcation theory[M].New York:Springer-Verlag,1981.
  • 5[5]LI JIBIN,LIU ZHENRONG.Smooth and non-smooth traveling wave in a nonlinearly dispersive equation[J].Appl.Math.Modelling,2000,25:41-56.
  • 6[6]DAI H -H.Exact traveling-wave solutions of an integrable equation arising in hyper-elastic rods[J].Wave Motion,1998,28:367-381.

同被引文献40

引证文献4

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部