期刊文献+

实体壳单元及其在动力显式有限元方法中的应用 被引量:7

The Solid Shell Element and Its Application in the Dynamic Explicit Finite Element Method
下载PDF
导出
摘要 将实体壳单元模型引入动力显式有限元方法,并采用假定自然应变方法消除剪切闭锁和梯形闭锁,利用平面应力假定改善厚向闭锁,通过共旋理论更新应力.对标准算例的计算及其与实体单元计算结果的对比显示,在相同计算模型条件下,实体壳单元模型较实体单元有更好的精度.利用实体壳单元对一段辊弯成型过程进行模拟.结果显示,采用实体壳单元可以有效缩小计算规模,提高计算效率. The solid shell element model was introduced into the dynamic explicit finite element method.The assumed natural strain(ANS) method was adopted to resolve shear locking and trapezoidal locking problem.Stress was updated based on a co-rotational formulation.Two benchmark examples were calculated and the calculating results were compared with those by solid element model.The results show that the proposed solid shell element model presents higher precision than the solid element.A stage of roll forming process was also simulated and the result shows that using solid shell element can improve calculation efficiency with no loss in accuracy.
出处 《上海交通大学学报》 EI CAS CSCD 北大核心 2006年第10期1663-1666,共4页 Journal of Shanghai Jiaotong University
基金 国家自然科学基金资助项目(50375095) 上海市自然科学基金项目(03ZR14064) 上海市国际合作资助项目(041107049) 上海市重点基础研究资助项目(04JC14050)
关键词 实体壳 动力显式有限元 假定自然应变 共旋理论 solid-shell element dynamic explicit finite element assumed natural strain(ANS) (co-rotational formulation)
  • 相关文献

参考文献9

  • 1[1]Hauptmann R,Schweizerhof K.A systematic development of solid-shell element formulations for linear and non-linear analyses employing only displacement degrees of freedom[J].Int J Numer Methods Eng,1998,42:49-69.
  • 2[2]Sze K Y,Yao L Q.A hybrid stress ANS solid-shell element and its generalization for smart structure modeling,Part I-solid shell element formulation[J].Int J Numer Meth Eng,2000,48:545-564.
  • 3[3]Hauptmann R,Doll S,Harnau M,et al."Solidshell" elements with linear and quadratic shape functions at large deformations with nearly incompressible materials[J].Computers & Structures,2001,79:1671-1685.
  • 4[4]Vu-Quoc L,Tan X G.Optimal solid shells for nonlinear analyses of multiplayer composites Ⅱ Dynamics[J].Comput Methods Appl Mech Engng,2003,192:1017-1059.
  • 5[5]Fontes Valente R A,Alves de Sousa R J,Natal Jorge R M,et.al.An enhanced strain 3D element for large deformation elastoplastic thin-shell applications[J].Computational Mechanics,2004,34:38-52.
  • 6[7]Stolarski H,Belytschko T,Lee S H.A review of shell finite elements and corotational theories[J].Computational Mechanics Advances,1994,2:125 -212.
  • 7[8]Krieg R D,Krieg D B.Accuracies of numericla solution methods for the elastic-perfectly plastic model[J].J Pressure Vessel Technology,1977,101:510-515.
  • 8[9]Ausserer M F,Lee S W.An eighteen-node solid element for thin shell analysis[J].Int J Numer Meth Eng,1988,26:1345-1364.
  • 9[10]Kiuchi M,Wang F Z.FEM simulation of roll-forming of ERW pipes and mill/process design-development of roll common use technology[C]//Gelin J C,Picart P.Proceedings of the 4th International Conference and Workshop on Numerical Simulation of 3D Sheet Metal Forming Processes.Besancon:[s.n.],1999:529-534.

同被引文献64

  • 1吴晖.含压电致动器的四结点矩形复合材料夹层板单元[J].工程力学,2004,21(4):156-161. 被引量:1
  • 2Hauptmann R, Schweizerhof K. A systematic development of solid shell element formulations for linear and non-linear analyses employing only displacement degrees of freedom[J]. Int J Numer Methods Engrg, 1998, 42(1): 49-69.
  • 3Sze K Y, Yao L Q. A hybrid stress ANS solid-shell element and its generalization for smart structure modeling. Part Ⅰ. Solidshell dement formulation. [J]. Inter J Numer Methods Engrg, 2000, 48(4): 545-564.
  • 4Sze K Y, Yao L Q, Pian T H H. An eighteen-node hybrid stress solid-shell element for homogenous and laminated structures [J]. Finite Elements in Analysis and Design,2002, 38(7) : 353-374.
  • 5Sze K Y, Chan W K. A six-node pentagonal assumed natural strain solid-shell element [J]. Finite Elements in Analysis and Design, 2001, 37(8) : 639-655.
  • 6Alves de Sousa R J, Natal Jorge R M, Fontes Valente R A, et al. A new volumetric and shear locking-free 3D enhanced strain element [J]. Engineering Computations, 2003, 20(7-8): 896- 925.
  • 7Frontes Valente R A, Alves de Sousa R J, Natal Jorge R M. An enhanced strain 3D element for large deformation elastoplastic thin-shell applications [J]. Computational Mechanics, 2004, 34 (1) : 38-54.
  • 8Simo J C, Rifai M S. A class of mixed assumed strain methods and the methods of incompatible modes[J]. Int J Numer Methods Engrg,2000, 29(8):1595-1638.
  • 9Simo J C, Armero F, Taylor R L. Improved versions of assumed enhanced strain tri-linear elements for 3D finite deformation [J]. Gomput Meth Appl Mech Engng, 1993, 110(3-4): 359-386.
  • 10Stolarski H, Belytschko T, Lee S K. A review of shell finite elements and co-rotational theories [J]. Int J Computational Mechanics Advances, 1994, 2 (2) : 125-212.

引证文献7

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部