期刊文献+

Note on Filon-type integration for higher order exponential time differencing methods in stiff systems

Note on Filon-type integration for higher order exponential time differencing methods in stiff systems
下载PDF
导出
摘要 The Filon-type quadrature is efficient for highly oscillatory functions - Fourier transforms. Based on Cox and Matthews' ETD schemes, the higher order single step exponential time differencing schemes are presented based on the Filon-type integration and the A-stability of the two-order Adams-Bashforth exponential time differencing scheme is considered. The effectiveness and accuracy of the schemes is tested.
出处 《Journal of Central South University of Technology》 2005年第z1期298-303,共6页 中南工业大学学报(英文版)
基金 Projects(02JJY2006, 03JJY2001) supported by Natural Science Foundation of Hunan Province project supported by JSPS Fellowship Research Program
  • 相关文献

参考文献10

  • 1[1]Beylkin G,Keiser J M.On the adaptive numerical solution of nonlinear partial differential equations in wavelet bases[J].J Comput Phys,1997,132:233-259.
  • 2[2]Beylkin G,Keiser J M,Vozovoi L.A new class of time discretization schemes for the solution of nonlinear PDES[J].J Comput Phys,1998,147:362-387.
  • 3[3]Cox S M,Matthews P C.Exponential time differencing for stiff systems[J].J Comput Phys,1997,132:430-455.
  • 4[4]Holland R.Finite-difference time-domain (FDTD) analysis of magnetic diffusion[J].IEEE Trans Electromagn Compat,1994,36:32-39.
  • 5[5]Petropoulos P G.Analysis of exponential time-differencing for FDTD in lossy di-electrics[J].IEEE Trans Antennas Propagation,1997,45:1054-1057.
  • 6[6]Schuster C,Christ A,Fichtner W.Review of FDTDtime-stepping for efficient simulation of electric conductive media[J].Microwave Opticalogy Technology Letter,2000,25:16-21.
  • 7[7]Filon L N G.On a quadrature formula for trigonometric integrals[J].Proc Royal SocEdinburgh,1928,49:38-47.
  • 8[8]Iserles A.On the numerical quadrature of highly-oscillating integrals I:Fourier transforms[J].IMA J Num Anal,2004,24:365-391.
  • 9[9]Iserles A.On the numerical quadrature of highly-oscillating integrals Ⅱ:Irregularoscillators[J].IMA J Num Anal,2005,25:25-44.
  • 10[10]Norsett S P.An A-stable modification of the AdamsBashforth methods[J].Lecture Notes in Mathematics,1969,109:214-219.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部