期刊文献+

L-零矩阵的广义Bott-Duffin逆的扰动分析(Ⅱ)(英文)

Perturbation Analysis of the Generalized Bott-Duffin Inverse of L-zero Matrices(Ⅱ)
下载PDF
导出
摘要 设L是F^n的子空间P_L是F^n到L上的正交投影,其中F=C或R.设A是一个n×n的矩阵.本文给出了广义Bott-Duffin逆A_(L)^(+)=P_L(AP_L+I-P_L)^+当A和L都有小扰动时的扰动分析.利用这个结果,建立了在A和B满足一定扰动条件时,系统Ax+By=b,Bx=d的最小二乘解的扰动分析. Let L be a subspace of F^n and P_l be the orthogonal projection of F^n onto L, where F=C or R. Let A be an n×n matrix. In this paper, we will give the perturbation analysis of the generalized Bott-Duffin inverse A_((L))^((+))=P_l(AP_l+I-P_l)^+ when A and L have small perturbation. Using this result, we establish a perturbation analysis to the least squares solution of the system Ax+B~*y=b, Bx=d under certain small perturbation of A and B.
出处 《华东师范大学学报(自然科学版)》 CAS CSCD 北大核心 2005年第Z1期72-78,共7页 Journal of East China Normal University(Natural Science)
基金 国家自然基金(10371044)上海市重点学科建设项目上海市基础研究重点项目(04JC14031)
关键词 广义B-D逆 L-零矩阵 扰动分析 正交投影 generalized B-D inverse L-zero matrix perturbation analysis orthogonal projection
  • 相关文献

参考文献9

  • 1Chen G,Xue Y.Perturbation analysis for the operator equation Tx = 6 in Banach spaces[].Journal of Mathematical Analysis and Applications.1997
  • 2Chen G,Liu G,Xue Y.Perturbation analysis of the generalized Bott-Duffin inverse of L-zero matrices[].Linear and Multilinear Algebra.2003
  • 3Bott R,Duffin R J.On the algebra of networks[].Transactions of the American Mathematical Society.1953
  • 4Xue Y,Chen G.The expression of the generalized Bott-Duffin inverse and its perturbation theory[].Applied Mathematics and Computation.2002
  • 5G Chen,G Liu,Y Xue.Perturbation theory for the generalized Bott-Duffin inverse and its applications[].Applied Mathematics and Computation.2002
  • 6Ben-Israel A,Greville T N E.Generalized Inverses Theory and Applications[]..1974
  • 7Kato K.Perturbation Theory for Linear Operators[]..1984
  • 8Stewart G W,Sun J G.Matrix Perturbation Theory[]..1990
  • 9Chen Y.The generalized Bott-Duffin inverse and its applications[].Linear Algebra and Its Applications.1990

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部